An efficient and effective second-order training algorithm for LSTM-based adaptive learning

buir.contributor.authorVural, N. Mert
buir.contributor.authorKozat, Süleyman S.
buir.contributor.orcidVural, N. Mert|0000-0002-2820-2806
buir.contributor.orcidKozat, Süleyman S.|000-0002-6488-3848
dc.citation.epage2554en_US
dc.citation.spage2541en_US
dc.citation.volumeNumber69en_US
dc.contributor.authorVural, N. Mert
dc.contributor.authorErgüt, S.
dc.contributor.authorKozat, Süleyman S.
dc.date.accessioned2022-01-31T13:50:07Z
dc.date.available2022-01-31T13:50:07Z
dc.date.issued2021-04-07
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.description.abstractWe study adaptive (or online) nonlinear regression with Long-Short-Term-Memory (LSTM) based networks, i.e., LSTM-based adaptive learning. In this context, we introduce an efficient Extended Kalman filter (EKF) based second-order training algorithm. Our algorithm is truly online, i.e., it does not assume any underlying data generating process and future information, except that the target sequence is bounded. Through an extensive set of experiments, we demonstrate significant performance gains achieved by our algorithm with respect to the state-of-the-art methods. Here, we mainly show that our algorithm consistently provides 10 to 45% improvement in the accuracy compared to the widely-used adaptive methods Adam, RMSprop, and DEKF, and comparable performance to EKF with a 10 to 15 times reduction in the run-time.en_US
dc.description.provenanceSubmitted by Evrim Ergin (eergin@bilkent.edu.tr) on 2022-01-31T13:50:07Z No. of bitstreams: 1 An_efficient_and_effective_second-order_training_algorithm_for_LSTM-based_adaptive_learning.pdf: 2617374 bytes, checksum: 93a2e55b3fada20f5c6f427eaf54a2f5 (MD5)en
dc.description.provenanceMade available in DSpace on 2022-01-31T13:50:07Z (GMT). No. of bitstreams: 1 An_efficient_and_effective_second-order_training_algorithm_for_LSTM-based_adaptive_learning.pdf: 2617374 bytes, checksum: 93a2e55b3fada20f5c6f427eaf54a2f5 (MD5) Previous issue date: 2021-04-07en
dc.identifier.doi10.1109/TSP.2021.3071566en_US
dc.identifier.eissn1941-0476
dc.identifier.issn1053-587X
dc.identifier.urihttp://hdl.handle.net/11693/76922
dc.language.isoEnglishen_US
dc.publisherIEEEen_US
dc.relation.isversionofhttps://doi.org/10.1109/TSP.2021.3071566en_US
dc.source.titleIEEE Transactions on Signal Processingen_US
dc.subjectAdaptive learningen_US
dc.subjectOnline learningen_US
dc.subjectTruly onlineen_US
dc.subjectLong short term memory (LSTM)en_US
dc.subjectKalman filteringen_US
dc.subjectRegressionen_US
dc.subjectStochastic gradient descent (SGD) EDICS Category: MLR-SLERen_US
dc.subjectMLR-DEEPen_US
dc.titleAn efficient and effective second-order training algorithm for LSTM-based adaptive learningen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
An_efficient_and_effective_second-order_training_algorithm_for_LSTM-based_adaptive_learning.pdf
Size:
2.5 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: