Systematic analysis of speech transcription modeling for reliable assessment of depression severity

buir.contributor.authorKaynak, Ergün Batuhan
buir.contributor.authorDibeklioğlu, Hamdi
buir.contributor.orcidKaynak, Ergün Batuhan|0000-0002-3249-3343
buir.contributor.orcidDibeklioğlu, Hamdi|0000-0003-0851-7808
dc.citation.epage91
dc.citation.issueNumber1
dc.citation.spage77
dc.citation.volumeNumber7
dc.contributor.authorKaynak, Ergün Batuhan
dc.contributor.authorDibeklioğlu, Hamdi
dc.date.accessioned2025-02-21T06:39:05Z
dc.date.available2025-02-21T06:39:05Z
dc.date.issued2024-04-27
dc.departmentDepartment of Computer Engineering
dc.description.abstractIn evaluating the severity of depression, we rigorously investigate a segmented deep learning framework that employs speech transcriptions for predicting levels of depression. Within this framework, we examine the effectiveness of well-known deep learning models for generating useful features for gauging depression. We validate the chosen models using the openly accessible Extended Distress Analysis Interview Corpus (EDAIC) as a dataset. Through our findings and analytical commentary, we demonstrate that valuable features for depression severity estimation can be achieved without leveraging the sequential relationships among textual descriptors. Specifically, temporal aggregation of latent representations surpasses the current best performing methods that utilize recurrent models, exhibiting an 8.8% improvement in Concordance Correlation Coefficient (CCC).
dc.description.provenanceSubmitted by Serengül Gözaçık (serengul.gozacik@bilkent.edu.tr) on 2025-02-21T06:39:05Z No. of bitstreams: 1 Systematic_analysis_of_speech_transcription_modeling_for_reliable_assessment_of_depression_severity.pdf: 1056806 bytes, checksum: d296a90e7b84e86e283800085e9557e8 (MD5)en
dc.description.provenanceMade available in DSpace on 2025-02-21T06:39:05Z (GMT). No. of bitstreams: 1 Systematic_analysis_of_speech_transcription_modeling_for_reliable_assessment_of_depression_severity.pdf: 1056806 bytes, checksum: d296a90e7b84e86e283800085e9557e8 (MD5) Previous issue date: 2024-04-27en
dc.identifier.doi10.35377/saucis...1381522
dc.identifier.eissn2636-8129
dc.identifier.urihttps://hdl.handle.net/11693/116536
dc.language.isoEnglish
dc.publisherSakarya University
dc.relation.isversionofhttps://dx.doi.org/10.35377/saucis...1381522
dc.rightsCC BY-NC 4.0
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.source.titleSakarya University Journal of Computer and Information Sciences
dc.subjectDepression severity assessment
dc.subjectText analysis
dc.subjectDeep learning
dc.subjectSpeech transcription
dc.titleSystematic analysis of speech transcription modeling for reliable assessment of depression severity
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Systematic_analysis_of_speech_transcription_modeling_for_reliable_assessment_of_depression_severity.pdf
Size:
1.01 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: