The network design problem with relays
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
The network design problem with relays (NDPR) is defined on an undirected graph G = (V, E, K), where V = {1, ..., n} is a vertex set, E = {(i, j) : i, j ∈ V, i < j} is an edge set. The set K = {(o(k), d(k))} is a set of communication pairs (or commodities): o(k) ∈ V and d(k) ∈ V denote the origin and the destination of the kth commodity, respectively. With each edge (i, j) are associated a cost cij and a length dij. With vertex i is associated a fixed cost fi of locating a relay at i. The NDPR consists of selecting a subset over(E, -) of edges of E and of locating relays at a subset over(V, -) of vertices of V in such a way that: (1) the sum Q of edge costs and relay costs is minimized; (2) there exists a path linking the origin and the destination of each commodity in which the length between the origin and the first relay, the last relay and the destination, or any two consecutive relays does not exceed a preset upper bound λ. This article develops a lower bound procedure and four heuristics for the NPDR. These are compared on several randomly generated instances with |V| ≤ 1002 and |E| ≤ 1930.