GLSDC based parameter estimation algorithm for a PMSM model

buir.contributor.authorSel, Bilgehan
buir.contributor.orcidSel, Bilgehan|0000-0001-8701-6539
dc.citation.epage12en_US
dc.citation.issueNumber3en_US
dc.citation.spage1en_US
dc.citation.volumeNumber14en_US
dc.contributor.authorSel, Artun
dc.contributor.authorSel, Bilgehan
dc.contributor.authorKasnakoğlu, Cosku
dc.date.accessioned2022-02-18T13:33:28Z
dc.date.available2022-02-18T13:33:28Z
dc.date.issued2021-01-26
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.description.abstractIn this study, a GLSDC (Gaussian Least Squares Differential Correction) based parameter estimation algorithm is used to identify a PMSM (Permanent Magnet Synchronous Motor) model. In this method, a nonlinear model is assumed to be the correct representation of the underlying state dynamics and the output signals are assumed to be measured in a noisy environment. Using noisy input and output signals, parameters that constitute the coefficients of the nonlinear state and input signal terms are to be estimated using the state transition matrix which is computed by the numerical means that are detailed. Since a GLSDC algorithm requires correct initial state value, this term is also estimated in addition to the unknown coefficients whose bounds are assumed to be known, which is mostly the case in the industrial applications. The batch input and output signals are used to iteratively estimate the parameter set before and after the convergence, and to recover the filtered state trajectories. A couple of different scenarios are tested by means of numerical simulations and the results are addressed. Different methods are discussed to compute better initial estimate values, to shorten the convergence time.en_US
dc.description.provenanceSubmitted by Türkan Cesur (cturkan@bilkent.edu.tr) on 2022-02-18T13:33:28Z No. of bitstreams: 1 GLSDC_Based_Parameter_Estimation_Algorithm_for_a_PMSM_Model.pdf: 1812427 bytes, checksum: 90866b907b51158452781d8e5dfb6915 (MD5)en
dc.description.provenanceMade available in DSpace on 2022-02-18T13:33:28Z (GMT). No. of bitstreams: 1 GLSDC_Based_Parameter_Estimation_Algorithm_for_a_PMSM_Model.pdf: 1812427 bytes, checksum: 90866b907b51158452781d8e5dfb6915 (MD5) Previous issue date: 2021-01-26en
dc.identifier.doi10.3390/en14030611en_US
dc.identifier.eissn1996-1073
dc.identifier.urihttp://hdl.handle.net/11693/77523
dc.language.isoEnglishen_US
dc.publisherMDPI AGen_US
dc.relation.isversionofhttps://doi.org/10.3390/en14030611en_US
dc.source.titleEnergiesen_US
dc.subjectParameter estimationen_US
dc.subjectGLSDCen_US
dc.subjectPMSMen_US
dc.titleGLSDC based parameter estimation algorithm for a PMSM modelen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
GLSDC_Based_Parameter_Estimation_Algorithm_for_a_PMSM_Model.pdf
Size:
1.73 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: