A new adaptive burst assembly algorithm for OBS networks considering capacity of control plane

Date

2008

Editor(s)

Advisor

Karaşan, Ezhan

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
2
views
5
downloads

Series

Abstract

Recent developments in wavelength-division multiplexing (WDM) technology increase the amount of bandwidth available in fiber links by many orders of magnitude. However, this increase in link capacities is limited by the conventional electronic router’s capability. Optical burst switching (OBS) has been proposed as a promising and a short-term solution for switching technology to take advantage of increased capacity of optical links. The congestion in OBS control plane and the adaptive burst assembly algorithms are two important research topics that are among the most effective factors determining the performance of OBS networks. These two problems have been separately studied in the literature so far. It has been shown that contending bursts at a core optical switch in an OBS network may experience unfair loss rates based on their residual off- set times and burst lengths, that are called path length priority effect (PLPE) and burst length priority effect (BLPE), respectively. In this thesis, we propose a new adaptive timer-based burst assembly algorithm (ATBA) which uses loss rate measurements for determining the burstification delays of traffic streams in order to mitigate the undesired effects of PLPE and BLPE. ATBA distributes the burst generation rates of traffic streams at an ingress node such that total rate of generated bursts is constant in order to constrain the congestion in the control plane. Without ATBA, the fairness index drops to 76% when per hop processing delay (PHPD) is increasing. With ATBA, the fairness index drops only to 85% with increasing PHPD. It is also shown that the total goodput of the OBS network improves by 5% compared with the case without ATBA.

Source Title

Publisher

Course

Other identifiers

Book Title

Degree Discipline

Electrical and Electronic Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)

Language

English

Type