Online anomaly detection with bandwidth optimized hierarchical kernel density estimators
buir.contributor.author | Süleyman Serdar, Süleyman Serdar | |
buir.contributor.orcid | Kozat, Süleyman Serdar|0000-0002-6488-3848 | |
dc.citation.epage | 4266 | en_US |
dc.citation.issueNumber | 9 | en_US |
dc.citation.spage | 4253 | en_US |
dc.citation.volumeNumber | 32 | en_US |
dc.contributor.author | Kerpicci, M. | |
dc.contributor.author | Ozkan, H. | |
dc.contributor.author | Kozat, Süleyman Serdar | |
dc.date.accessioned | 2021-03-17T07:09:39Z | |
dc.date.available | 2021-03-17T07:09:39Z | |
dc.date.issued | 2020 | |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.description.abstract | We propose a novel unsupervised anomaly detection algorithm that can work for sequential data from any complex distribution in a truly online framework with mathematically proven strong performance guarantees. First, a partitioning tree is constructed to generate a doubly exponentially large hierarchical class of observation space partitions, and every partition region trains an online kernel density estimator (KDE) with its own unique dynamical bandwidth. At each time, the proposed algorithm optimally combines the class estimators to sequentially produce the final density estimation. We mathematically prove that the proposed algorithm learns the optimal partition with kernel bandwidths that are optimized in both region-specific and time-varying manner. The estimated density is then compared with a data-adaptive threshold to detect anomalies. Overall, the computational complexity is only linear in both the tree depth and data length. In our experiments, we observe significant improvements in anomaly detection accuracy compared with the state-of-the-art techniques. | en_US |
dc.description.provenance | Submitted by Onur Emek (onur.emek@bilkent.edu.tr) on 2021-03-17T07:09:39Z No. of bitstreams: 1 Online_Anomaly_Detection_With_Bandwidth_Optimized_Hierarchical_Kernel_Density_Estimators.pdf: 1154616 bytes, checksum: a2ac6a779fe445c4317fae8da5ebec50 (MD5) | en |
dc.description.provenance | Made available in DSpace on 2021-03-17T07:09:39Z (GMT). No. of bitstreams: 1 Online_Anomaly_Detection_With_Bandwidth_Optimized_Hierarchical_Kernel_Density_Estimators.pdf: 1154616 bytes, checksum: a2ac6a779fe445c4317fae8da5ebec50 (MD5) Previous issue date: 2020 | en |
dc.identifier.doi | 10.1109/TNNLS.2020.3017675 | en_US |
dc.identifier.eissn | 2162-2388 | en_US |
dc.identifier.issn | 2162-237X | |
dc.identifier.uri | http://hdl.handle.net/11693/75939 | |
dc.language.iso | English | en_US |
dc.publisher | IEEE | en_US |
dc.relation.isversionof | https://dx.doi.org/10.1109/TNNLS.2020.3017675 | en_US |
dc.source.title | IEEE Transactions on Neural Networks and Learning Systems | en_US |
dc.subject | Anomaly detection | en_US |
dc.subject | Bandwidth selection | en_US |
dc.subject | Kernel density estimation | en_US |
dc.subject | Online | en_US |
dc.subject | Regret analysis | en_US |
dc.title | Online anomaly detection with bandwidth optimized hierarchical kernel density estimators | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Online_Anomaly_Detection_With_Bandwidth_Optimized_Hierarchical_Kernel_Density_Estimators.pdf
- Size:
- 1.1 MB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: