Online anomaly detection with bandwidth optimized hierarchical kernel density estimators

buir.contributor.authorSüleyman Serdar, Süleyman Serdar
buir.contributor.orcidKozat, Süleyman Serdar|0000-0002-6488-3848
dc.citation.epage4266en_US
dc.citation.issueNumber9en_US
dc.citation.spage4253en_US
dc.citation.volumeNumber32en_US
dc.contributor.authorKerpicci, M.
dc.contributor.authorOzkan, H.
dc.contributor.authorKozat, Süleyman Serdar
dc.date.accessioned2021-03-17T07:09:39Z
dc.date.available2021-03-17T07:09:39Z
dc.date.issued2020
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.description.abstractWe propose a novel unsupervised anomaly detection algorithm that can work for sequential data from any complex distribution in a truly online framework with mathematically proven strong performance guarantees. First, a partitioning tree is constructed to generate a doubly exponentially large hierarchical class of observation space partitions, and every partition region trains an online kernel density estimator (KDE) with its own unique dynamical bandwidth. At each time, the proposed algorithm optimally combines the class estimators to sequentially produce the final density estimation. We mathematically prove that the proposed algorithm learns the optimal partition with kernel bandwidths that are optimized in both region-specific and time-varying manner. The estimated density is then compared with a data-adaptive threshold to detect anomalies. Overall, the computational complexity is only linear in both the tree depth and data length. In our experiments, we observe significant improvements in anomaly detection accuracy compared with the state-of-the-art techniques.en_US
dc.description.provenanceSubmitted by Onur Emek (onur.emek@bilkent.edu.tr) on 2021-03-17T07:09:39Z No. of bitstreams: 1 Online_Anomaly_Detection_With_Bandwidth_Optimized_Hierarchical_Kernel_Density_Estimators.pdf: 1154616 bytes, checksum: a2ac6a779fe445c4317fae8da5ebec50 (MD5)en
dc.description.provenanceMade available in DSpace on 2021-03-17T07:09:39Z (GMT). No. of bitstreams: 1 Online_Anomaly_Detection_With_Bandwidth_Optimized_Hierarchical_Kernel_Density_Estimators.pdf: 1154616 bytes, checksum: a2ac6a779fe445c4317fae8da5ebec50 (MD5) Previous issue date: 2020en
dc.identifier.doi10.1109/TNNLS.2020.3017675en_US
dc.identifier.eissn2162-2388en_US
dc.identifier.issn2162-237X
dc.identifier.urihttp://hdl.handle.net/11693/75939
dc.language.isoEnglishen_US
dc.publisherIEEEen_US
dc.relation.isversionofhttps://dx.doi.org/10.1109/TNNLS.2020.3017675en_US
dc.source.titleIEEE Transactions on Neural Networks and Learning Systemsen_US
dc.subjectAnomaly detectionen_US
dc.subjectBandwidth selectionen_US
dc.subjectKernel density estimationen_US
dc.subjectOnlineen_US
dc.subjectRegret analysisen_US
dc.titleOnline anomaly detection with bandwidth optimized hierarchical kernel density estimatorsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Online_Anomaly_Detection_With_Bandwidth_Optimized_Hierarchical_Kernel_Density_Estimators.pdf
Size:
1.1 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: