Theoretical investigation of excited states of oligothiophene anions

dc.citation.epage6058en_US
dc.citation.issueNumber27en_US
dc.citation.spage6053en_US
dc.citation.volumeNumber112en_US
dc.contributor.authorAlkan, F.en_US
dc.contributor.authorSalzner, U.en_US
dc.date.accessioned2016-02-08T10:08:25Z
dc.date.available2016-02-08T10:08:25Z
dc.date.issued2008en_US
dc.departmentDepartment of Chemistryen_US
dc.description.abstractElectron-hole symmetry upon p- and n-doping of conducting organic polymers is rationalized with Hückel theory by the presence of symmetrically located intragap states. Since density functional theory (DFT) predicts very different geometries and energy level diagrams for conjugated π-systems than semiempirical methods, it is an interesting question whether DFT confirms the existence of electron-hole symmetry predicted at the Hückel level. To answer this question, geometries of oligothiophene anions with 5-19 rings were optimized and their UV/vis spectra were calculated with time-dependent DFT. Although DFT does not produce symmetrically placed sub-band energy levels, spectra of cations and anions are almost identical. The similarity in transition energies and oscillator strengths of anions and cations can be explained by the fact that the single sub-band energy level of cations lies above the valence band by the same amount of energy as the single sub-band level of anions lies below the conduction band. This and the resemblance of the energy level spacings in valence bands of cations to those in conduction bands of anions give rise to peaks with equal energies and oscillator strengths. © 2008 American Chemical Society.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T10:08:25Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2008en
dc.identifier.doi10.1021/jp711135een_US
dc.identifier.issn1089-5639
dc.identifier.urihttp://hdl.handle.net/11693/23063
dc.language.isoEnglishen_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/jp711135een_US
dc.source.titleJournal of Physical Chemistry Aen_US
dc.subjectConduction bandsen_US
dc.subjectDensity functional theoryen_US
dc.subjectDiscrete fourier transformsen_US
dc.subjectElectric conductivityen_US
dc.subjectElectric excitationen_US
dc.subjectElectron energy levelsen_US
dc.subjectElectron mobilityen_US
dc.subjectHeat conductionen_US
dc.subjectHeterojunctionsen_US
dc.subjectIonsen_US
dc.subjectNegative ionsen_US
dc.subjectPositive ionsen_US
dc.subjectProbability density functionen_US
dc.subjectSemiconductor quantum dotsen_US
dc.subjectConducting organic polymersen_US
dc.subjectElectron-hole symmetryen_US
dc.subjectEnergy level diagramsen_US
dc.subjectEnergy level spacingsen_US
dc.subjectExcited statesen_US
dc.subjectIN transitionsen_US
dc.subjectN-dopingen_US
dc.subjectOligo-thiopheneen_US
dc.subjectOscillator strengthsen_US
dc.subjectSemi-empirical methodsen_US
dc.subjectSub bandsen_US
dc.subjectTime-dependent DFTen_US
dc.subjectUV/Vis spectraen_US
dc.subjectValence bandsen_US
dc.subjectOrganic polymersen_US
dc.titleTheoretical investigation of excited states of oligothiophene anionsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Theoretical Investigation of Excited States of Oligothiophene Anions.pdf
Size:
1.17 MB
Format:
Adobe Portable Document Format
Description:
Full printable version