Fast learning for dynamic resource allocation in AI-Enabled radio networks

Date

2020

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

IEEE Transactions on Cognitive Communications and Networking

Print ISSN

2332-7731

Electronic ISSN

Publisher

IEEE

Volume

6

Issue

1

Pages

95 - 110

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

Artificial Intelligence (AI)-enabled radios are expected to enhance the spectral efficiency of 5th generation (5G) millimeter wave (mmWave) networks by learning to optimize network resources. However, allocating resources over the mmWave band is extremely challenging due to rapidly-varying channel conditions. We consider several resource allocation problems for mmWave radio networks under unknown channel statistics and without any channel state information (CSI) feedback: i) dynamic rate selection for an energy harvesting transmitter, ii) dynamic power allocation for heterogeneous applications, and iii) distributed resource allocation in a multi-user network. All of these problems exhibit structured payoffs which are unimodal functions over partially ordered arms (transmission parameters) as well as over partially ordered contexts (side-information). Unimodality over arms helps in reducing the number of arms to be explored, while unimodality over contexts helps in using past information from nearby contexts to make better selections. We model this as a structured reinforcement learning problem, called contextual unimodal multi-armed bandit (MAB), and propose an online learning algorithm that exploits unimodality to optimize the resource allocation over time, and prove that it achieves logarithmic in time regret. Our algorithm's regret scales sublinearly both in the number of arms and contexts for a wide range of scenarios. We also show via simulations that our algorithm significantly improves the performance in the aforementioned resource allocation problems.

Course

Other identifiers

Book Title

Citation