Real monomial Burnside rings and a decomposition of the the tom Dieck map

buir.advisorBarker, Laurence J.
dc.contributor.authorTuvay, İpek
dc.date.accessioned2016-01-08T18:09:51Z
dc.date.available2016-01-08T18:09:51Z
dc.date.issued2009
dc.descriptionAnkara : The Department of Mathematics and the Institute of Engineering and Science of Bilkent University, 2009.en_US
dc.descriptionThesis (Master's) -- Bilkent University, 2009.en_US
dc.descriptionIncludes bibliographical references leaves 27.en_US
dc.description.abstractThis thesis is mainly concerned with a decomposition of the reduced tom Dieck map die : f A(RG) → B(G) × into two maps die+ and die− of the real monomial Burnside ring. The key idea is to introduce a real Lefschetz invariant as an element of the real monomial Burnside ring and to generalize the assertion that the image of an RG-module under the tom Dieck map coincides with the Lefschetz invariant of the sphere of the same module.en_US
dc.description.provenanceMade available in DSpace on 2016-01-08T18:09:51Z (GMT). No. of bitstreams: 1 0003805.pdf: 203951 bytes, checksum: 0e79a7a5b3984e0d508b410bef855d73 (MD5)en
dc.description.statementofresponsibilityTuvay, İpeken_US
dc.format.extentv, 27 leavesen_US
dc.identifier.urihttp://hdl.handle.net/11693/14865
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMonomial Burnside ringsen_US
dc.subjecttom Dieck mapen_US
dc.subjectLefschetz invarianen_US
dc.subject.lccQA171 .T88 2009en_US
dc.subject.lcshBurnside rings.en_US
dc.subject.lcshRings (Algebra).en_US
dc.subject.lcshBurnside problem.en_US
dc.titleReal monomial Burnside rings and a decomposition of the the tom Dieck mapen_US
dc.typeThesisen_US
thesis.degree.disciplineMathematics
thesis.degree.grantorBilkent University
thesis.degree.levelMaster's
thesis.degree.nameMS (Master of Science)

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0003805.pdf
Size:
199.17 KB
Format:
Adobe Portable Document Format