Real monomial Burnside rings and a decomposition of the the tom Dieck map
buir.advisor | Barker, Laurence J. | |
dc.contributor.author | Tuvay, İpek | |
dc.date.accessioned | 2016-01-08T18:09:51Z | |
dc.date.available | 2016-01-08T18:09:51Z | |
dc.date.issued | 2009 | |
dc.description | Ankara : The Department of Mathematics and the Institute of Engineering and Science of Bilkent University, 2009. | en_US |
dc.description | Thesis (Master's) -- Bilkent University, 2009. | en_US |
dc.description | Includes bibliographical references leaves 27. | en_US |
dc.description.abstract | This thesis is mainly concerned with a decomposition of the reduced tom Dieck map die : f A(RG) → B(G) × into two maps die+ and die− of the real monomial Burnside ring. The key idea is to introduce a real Lefschetz invariant as an element of the real monomial Burnside ring and to generalize the assertion that the image of an RG-module under the tom Dieck map coincides with the Lefschetz invariant of the sphere of the same module. | en_US |
dc.description.provenance | Made available in DSpace on 2016-01-08T18:09:51Z (GMT). No. of bitstreams: 1 0003805.pdf: 203951 bytes, checksum: 0e79a7a5b3984e0d508b410bef855d73 (MD5) | en |
dc.description.statementofresponsibility | Tuvay, İpek | en_US |
dc.format.extent | v, 27 leaves | en_US |
dc.identifier.uri | http://hdl.handle.net/11693/14865 | |
dc.language.iso | English | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Monomial Burnside rings | en_US |
dc.subject | tom Dieck map | en_US |
dc.subject | Lefschetz invarian | en_US |
dc.subject.lcc | QA171 .T88 2009 | en_US |
dc.subject.lcsh | Burnside rings. | en_US |
dc.subject.lcsh | Rings (Algebra). | en_US |
dc.subject.lcsh | Burnside problem. | en_US |
dc.title | Real monomial Burnside rings and a decomposition of the the tom Dieck map | en_US |
dc.type | Thesis | en_US |
thesis.degree.discipline | Mathematics | |
thesis.degree.grantor | Bilkent University | |
thesis.degree.level | Master's | |
thesis.degree.name | MS (Master of Science) |
Files
Original bundle
1 - 1 of 1