Recognizing human actions using key poses
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
In this paper, we explore the idea of using only pose, without utilizing any temporal information, for human action recognition. In contrast to the other studies using complex action representations, we propose a simple method, which relies on extracting "key poses" from action sequences. Our contribution is two-fold. Firstly, representing the pose in a frame as a collection of line-pairs, we propose a matching scheme between two frames to compute their similarity. Secondly, to extract "key poses" for each action, we present an algorithm, which selects the most representative and discriminative poses from a set of candidates. Our experimental results on KTH and Weizmann datasets have shown that pose information by itself is quite effective in grasping the nature of an action and sufficient to distinguish one from others. © 2010 IEEE.