Metaheuristic approaches for bi-objective stochastic optimizaton of a grid-connected decentralized energy system

Date

2017-08

Editor(s)

Advisor

Kocaman, Ayşe Selin

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
4
views
15
downloads

Series

Abstract

With the growing tendency in shifting from centralized to decentralized energy systems, we investigate the sizing decision of a grid-connected decentralized energy system. This system is composed of renewable energy generation components which are solar panels and wind turbines, storage unit and grid connection. In the system, it is aimed to nd the optimal sizes of these components while considering both cost and environment. Resulting from this consideration, there are two objectives which are total cost and carbon dioxide emission in the problem. Together with these two objectives, uncertainty introduced by the renewable energy sources and electricity demand makes the problem stochastic in nature. In order to solve the bi-objective stochastic optimization problem, we establish a metaheuristic-based solution approach in which metaheuristic algorithms and simulation tool are utilized in a simulation-optimization framework. By using three well-known metaheuristic algorithms such as Optimized Multi Objective Particle Swarm Optimization Algorithm (OMOPSO), Non-dominated Sorting Genetic Algorithm II (NSGA-II) and Strength Pareto Evolutionary Algorithm 2 (SPEA2) in the proposed methodology, a numerical study is carried out for alternative wind, solar and demand scenario sets. We show that OMOPSO is the best performing algorithm to be used in the metahuristic approach. With OMOPSO algorithm's superior performance, metaheuristic approach is compared to a simulation-optimization approach that is previously developed for the same problem by using performance metrics.

Course

Other identifiers

Book Title

Degree Discipline

Industrial Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)