Constructing energy efficient bluetooth scatternets for wireless sensor networks

buir.advisorKörpeoğlu, İbrahim
dc.contributor.authorSaginbekov, Sain
dc.date.accessioned2016-07-01T11:00:51Z
dc.date.available2016-07-01T11:00:51Z
dc.date.issued2004
dc.descriptionCataloged from PDF version of article.en_US
dc.description.abstractThe improvements in the area of wireless communication and micro-sensor technology have made the deployment of thousands, even millions, of low cost and low power sensor nodes in a region of interest a reality. After deploying sensor nodes in a target region of interest, which can be inaccessible by people, people can collect useful data from the region remotely. The sensor nodes use wireless communication and can collaborate with each other. However, sensor nodes are battery powered and therefore they have limited energy and lifetime. This makes energy as the main resource problem in sensor networks. The design process for sensor networks has to consider energy constraints as the main factor to extend the lifetime of the network. The wireless technology used for communication among sensor nodes can affect the lifetime of the network, since different technologies have different energy consumption parameters. Bluetooth, being low power and low cost, is a good candidate for being the underlying wireless connectivity technology for sensor networks tailored for various applications. But in order to build a large network of Bluetooth-enabled sensor nodes, we have to first form a Bluetooth scatternet. The topology of the Bluetooth scatternet affects the routing scheme to be used over that topology to collect and route informaton from sensor nodes to a base station. And routing scheme, in turn, affects how much energy is consumed during transport of information. Therefore, it is important to build a Bluetooth scatternet wisely to reduce and balance the energy consumption, hence extend the lifetime of a sensor network. In this thesis work, we propose a new Bluetooth scatternet formation algorithm to be used in Bluetooth-based sensor networks. Our algorithm is based on first computing a shortest path tree from the base station to all sensor nodes and then solving the degree constraint problem so that the degree of each node in the network is not greater than seven (a Bluetooth constraint). We also propose a balancing algorithm over the degree constrained tree to balance the energy consumption of the nodes that are closer to the base station. The closer nodes are the nodes that will consume more energy in the network since all traffic has to be forwarded over these nodes. Our simulation results show that our proposed algorithm improves the lifetime of the network by trying to reduce the energy consumed during data transfer and also by balancing the load among the nodes.en_US
dc.description.provenanceMade available in DSpace on 2016-07-01T11:00:51Z (GMT). No. of bitstreams: 1 0002616.pdf: 372833 bytes, checksum: 7d4719c225847c062650fba05e3481ae (MD5) Previous issue date: 2004en
dc.description.statementofresponsibilitySaginbekov, Sainen_US
dc.format.extentxii, 59 leavesen_US
dc.identifier.itemidBILKUTUPB083966
dc.identifier.urihttp://hdl.handle.net/11693/29525
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectWireless Sensor Networksen_US
dc.subjectPath Treeen_US
dc.subjectShortesten_US
dc.subjectRoutingen_US
dc.subjectScatterneten_US
dc.subjectBluetoothen_US
dc.subject.lccTK7872.D48 S24 2004en_US
dc.subject.lcshSensor networks.en_US
dc.titleConstructing energy efficient bluetooth scatternets for wireless sensor networksen_US
dc.typeThesisen_US
thesis.degree.disciplineComputer Engineering
thesis.degree.grantorBilkent University
thesis.degree.levelMaster's
thesis.degree.nameMS (Master of Science)

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0002616.pdf
Size:
364.09 KB
Format:
Adobe Portable Document Format
Description:
Full printable version