Non-boltzmann stationary distributions and non-equilibrium relations in active baths

Limited Access
This item is unavailable until:
2019-10-24

Date

2016-09

Editor(s)

Advisor

Volpe, Giovanni

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Bilkent University

Volume

Issue

Pages

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

Most natural and engineered processes, such as biomolecular reactions, protein folding, and population dynamics, occur far from equilibrium and, therefore, can- not be treated within the framework of classical equilibrium thermodynamics. Here, we experimentally study how some fundamental thermodynamic quantities and relations are affected by the presence of the non-equilibrium uctuations as- sociated with an active bath. We show, in particular, that, as the confinement of the particle increases, the stationary probability distribution of a Brownian particle confined within a harmonic potential becomes non-Boltzmann, featuring a transition from a Gaussian distribution to a heavy-tailed distribution. Because of this, non-equilibrium relations (e.g. Jarzynski equality, Crooks uctuation the- orem) cannot be applied. We show that these relations can be restored by using the effective potential associated with the stationary probability distribution. We corroborate our experimental findings with theoretical arguments.

Course

Other identifiers

Book Title

Citation

item.page.isversionof