Non-boltzmann stationary distributions and non-equilibrium relations in active baths

Date
2016-09
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Bilkent University
Volume
Issue
Pages
Language
English
Type
Thesis
Journal Title
Journal ISSN
Volume Title
Abstract

Most natural and engineered processes, such as biomolecular reactions, protein folding, and population dynamics, occur far from equilibrium and, therefore, can- not be treated within the framework of classical equilibrium thermodynamics. Here, we experimentally study how some fundamental thermodynamic quantities and relations are affected by the presence of the non-equilibrium uctuations as- sociated with an active bath. We show, in particular, that, as the confinement of the particle increases, the stationary probability distribution of a Brownian particle confined within a harmonic potential becomes non-Boltzmann, featuring a transition from a Gaussian distribution to a heavy-tailed distribution. Because of this, non-equilibrium relations (e.g. Jarzynski equality, Crooks uctuation the- orem) cannot be applied. We show that these relations can be restored by using the effective potential associated with the stationary probability distribution. We corroborate our experimental findings with theoretical arguments.

Course
Other identifiers
Book Title
Keywords
Stochastic thermodynamics, Non-equilibrium relations, Active baths
Citation
Published Version (Please cite this version)