Straggler mitigation through unequal error protection for distributed matrix multiplication

buir.contributor.authorTegin, Büşra
buir.contributor.authorDuman, Tolga M.
buir.contributor.orcidTegin, Büşra|0000-0002-3342-5414
buir.contributor.orcidDuman, Tolga M.|0000-0002-5187-8660
dc.citation.epage6en_US
dc.citation.spage1en_US
dc.contributor.authorTegin, Büşra
dc.contributor.authorHernandez, Eduin E.
dc.contributor.authorRini, Stefano
dc.contributor.authorDuman, Tolga M.
dc.coverage.spatialMontreal, QC, Canadaen_US
dc.date.accessioned2022-02-04T12:50:09Z
dc.date.available2022-02-04T12:50:09Z
dc.date.issued2021-08-06
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.descriptionConference Name: ICC 2021 - IEEE International Conference on Communicationsen_US
dc.descriptionDate of Conference: 14-23 June 2021en_US
dc.description.abstractLarge-scale machine learning and data mining methods routinely distribute computations across multiple agents to parallelize processing. The time required for computation at the agents is affected by the availability of local resources giving rise to the "straggler problem" in which the computation results are held back by unresponsive agents. For this problem, linear coding of the matrix sub-blocks can be used to introduce resilience toward straggling. The Parameter Server (PS) utilizes a channel code and distributes the matrices to the workers for multiplication. It then produces an approximation to the desired matrix multiplication using the results of the computations received at a given deadline. In this paper, we propose to employ Unequal Error Protection (UEP) codes to alleviate the straggler problem. The resiliency level of each sub-block is chosen according to its norm as blocks with larger norms have higher effects on the result of the matrix multiplication. We validate the effectiveness of our scheme both theoretically and through numerical evaluations. We derive a theoretical characterization of the performance of UEP using random linear codes, and compare it the case of equal error protection. We also apply the proposed coding strategy to the computation of the back-propagation step in the training of a Deep Neural Network (DNN), for which we investigate the fundamental trade-off between precision and the time required for the computations.en_US
dc.description.provenanceSubmitted by Betül Özen (ozen@bilkent.edu.tr) on 2022-02-04T12:50:09Z No. of bitstreams: 1 Straggler_Mitigation_through_Unequal_Error_Protection_for_Distributed_Matrix_Multiplication.pdf: 1815053 bytes, checksum: eb1bfa415951ef24036fbe8b42c85feb (MD5)en
dc.description.provenanceMade available in DSpace on 2022-02-04T12:50:09Z (GMT). No. of bitstreams: 1 Straggler_Mitigation_through_Unequal_Error_Protection_for_Distributed_Matrix_Multiplication.pdf: 1815053 bytes, checksum: eb1bfa415951ef24036fbe8b42c85feb (MD5) Previous issue date: 2021-08-06en
dc.identifier.doi10.1109/ICC42927.2021.9500264en_US
dc.identifier.eisbn978-1-7281-7122-7
dc.identifier.eissn1938-1883
dc.identifier.isbn978-1-7281-7123-4
dc.identifier.issn1550-3607
dc.identifier.urihttp://hdl.handle.net/11693/77047
dc.language.isoEnglishen_US
dc.publisherIEEEen_US
dc.relation.isversionofhttps://dx.doi.org/10.1109/ICC42927.2021.9500264en_US
dc.source.titleIEEE International Conference on Communications (ICC)en_US
dc.subjectApproximate matrix multiplicationen_US
dc.subjectDistributed computationen_US
dc.subjectStraggling serversen_US
dc.subjectUnequal error protectionen_US
dc.titleStraggler mitigation through unequal error protection for distributed matrix multiplicationen_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Straggler_Mitigation_through_Unequal_Error_Protection_for_Distributed_Matrix_Multiplication.pdf
Size:
1.73 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: