Spatio-temporal forecasting over graphs with deep learning

Date
2020-12
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Bilkent University
Volume
Issue
Pages
Language
English
Type
Thesis
Journal Title
Journal ISSN
Volume Title
Abstract

We study spatiotemporal forecasting of high-dimensional rectangular grid graph structured data, which exhibits both complex spatial and temporal dependencies. In most high-dimensional spatiotemporal forecasting scenarios, deep learningbased methods are widely used. However, deep learning algorithms are overconfident in their predictions, and this overconfidence causes problems in the human-in-the-loop domains such as medical diagnosis and many applications of 5 th generation wireless networks. We propose spatiotemporal extensions to variational autoencoders for regularization, robustness against out-of data distribution, and incorporating uncertainty in predictions to resolve overconfident predictions. However, variational inference methods are prone to biased posterior approximations due to using explicit exponential family densities and mean-field assumption in their posterior factorizations. To mitigate these problems, we utilize variational inference & learning with semi-implicit distributions and apply this inference scheme into convolutional long-short term memory networks(ConvLSTM) for the first time in the literature. In chapter 3, we propose variational autoencoders with convolutional long-short term memory networks, called VarConvLSTM. In chapter 4, we improve our algorithm via semi-implicit & doubly semi-implicit variational inference to model multi-modalities in the data distribution . In chapter 5, we demonstrate that proposed algorithms are applicable for spatiotemporal forecasting tasks, including space-time mobile traffic forecasting over Turkcell base station networks.

Course
Other identifiers
Book Title
Keywords
Deep learning, Generative models, Approximate bayesian inference, Variational inference, Convolutional neural networks, Recurrent neural networks, Spatiotemporal modeling, Supervised learning
Citation
Published Version (Please cite this version)