Stability windows and unstable root-loci for linear fractional time-delay systems

buir.contributor.authorÖzbay, Hitay
dc.citation.epage12537en_US
dc.citation.issueNumber1en_US
dc.citation.spage12532en_US
dc.citation.volumeNumber18en_US
dc.contributor.authorFioravanti, A.R.en_US
dc.contributor.authorBonnet, C.en_US
dc.contributor.authorÖzbay, Hitayen_US
dc.contributor.authorNiculescu, S.-I.en_US
dc.coverage.spatialMilano, Italyen_US
dc.date.accessioned2016-02-08T12:16:08Z
dc.date.available2016-02-08T12:16:08Z
dc.date.issued2011en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.descriptionConference name: Proceedings of the 18th World Congress The International Federation of Automatic Controen_US
dc.descriptionDate of Conference: August 28 - September 2, 2011en_US
dc.description.abstractThe main point of this paper is on the formulation of a numerical algorithm to find the location of all unstable poles, and therefore the characterization of the stability as a function of the delay, for a class of linear fractional-order neutral systems with multiple commensurate delays. We start by the asymptotic position of the chains of poles and conditions for their stability, for a small delay. When these conditions are met, we continue by means of the root continuity argument, and using a simple substitution, we can find all the locations where roots cross the imaginary axis. We can extend the method to provide the location of all unstable poles as a function of the delay. Before concluding, some examples are presented. © 2011 IFAC.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T12:16:08Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2011en
dc.identifier.doi10.3182/20110828-6-IT-1002.03086en_US
dc.identifier.issn1474-6670
dc.identifier.urihttp://hdl.handle.net/11693/28276
dc.language.isoEnglishen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttps://doi.org/10.3182/20110828-6-IT-1002.03086en_US
dc.source.titleIFAC Proceedings Volumes (IFAC-PapersOnline)en_US
dc.subjectDelay effectsen_US
dc.subjectFractional systemsen_US
dc.subjectNeutral systemsen_US
dc.subjectRoot-locusen_US
dc.subjectAsymptotic positionen_US
dc.subjectCommensurate delaysen_US
dc.subjectDelay effectsen_US
dc.subjectFractional systemsen_US
dc.subjectImaginary axisen_US
dc.subjectNeutral systemsen_US
dc.subjectNumerical algorithmsen_US
dc.subjectSimple substitutionen_US
dc.subjectTime-delay systemsen_US
dc.subjectAlgorithmsen_US
dc.subjectDelay control systemsen_US
dc.subjectRoot locien_US
dc.subjectPolesen_US
dc.titleStability windows and unstable root-loci for linear fractional time-delay systemsen_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Stability windows and unstable root-loci for linear fractional time-delay systems.pdf
Size:
643.34 KB
Format:
Adobe Portable Document Format
Description:
Full printable version