Computation of the optimal H∞ controller for a fractional order system
Files
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Attention Stats
Usage Stats
views
downloads
Series
Abstract
This work investigates the H∞ optimal controller design for a fractional order system with time delay. For illustrative purposes, a magnetic suspension system model, derived by Knospe and Zhu is considered. The transfer function is infinite dimensional including e −hs and a rational function of √ s, where h > 0 represents the delay. Recently in a paper by Ozbay, a formulation is given to design the ¨ H∞ optimal controller for the mixed sensitivity minimization problem for unstable infinite dimensional plants with low order weights. This formulation is used to design the H∞ optimal controller for the fractional order system considered, and it is compared to alternative computation methods for H∞ control of infinite dimensional systems. To implement the controller, approximation methods are also investigated. Furthermore, finite dimensional rational approximation techniques of the fractional order integrator are evaluated for simulation purposes.