Parallel image restoration using surrogate constraint methods

Date

2007

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
2
views
18
downloads

Citation Stats

Series

Abstract

When formulated as a system of linear inequalities, the image restoration problem yields huge, unstructured, sparse matrices even for images of small size. To solve the image restoration problem, we use the surrogate constraint methods that can work efficiently for large problems. Among variants of the surrogate constraint method, we consider a basic method performing a single block projection in each step and a coarse-grain parallel version making simultaneous block projections. Using several state-of-the-art partitioning strategies and adopting different communication models, we develop competing parallel implementations of the two methods. The implementations are evaluated based on the per iteration performance and on the overall performance. The experimental results on a PC cluster reveal that the proposed parallelization schemes are quite beneficial.

Source Title

Journal of Parallel and Distributed Computing

Publisher

Academic Press

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English