Joint topology design with routing and power control in ad hoc networks

Date

2003

Editor(s)

Advisor

Karaşan, Ezhan

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
1
views
5
downloads

Series

Abstract

We discuss the problem of designing an ad hoc network topology by jointly using power control and routing. A well-designed topology in ad hoc networks provides several advantages: increasing the capacity, decreasing the complexity and reducing the power consumption. We formulate the topology design problem as an Integer Linear Programming (ILP) model. An optimal topology is designed subject to interference and connectivity constraints with three different objective functions and two power control approaches. Common transmit power (COMPOW) and the adaptive power (ADPOW) are the two different power control techniques used in this thesis. The objectives of the models that are used in the topology design are maximizing the number of established links, using shortest path routing strategy and minimizing the maximum traffic load over the most congested link by load balancing. Performance comparisons between two power control approaches with three different objectives in the topology design are achieved using numerical results on a sample network. Minimum end-to-end throughput, total throughput, total power consumption and the number of established links are used as the performance metrics. The numerical results show that selecting the optimal power for both power control approaches provides similar performance results. Therefore, simplicity of the COMPOW makes it more attractive than ADPOW in the topology design.

Source Title

Publisher

Course

Other identifiers

Book Title

Degree Discipline

Electrical and Electronic Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)

Language

English

Type