Video object segmentation for interactive multimedia

Date

1998

Editor(s)

Advisor

Onural, Levent

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
2
views
5
downloads

Series

Abstract

Recently, trends in video processing research have shifted from video compression to video analysis, due to the emerging standards MPEG-4 and MPEG-7. These standards will enable the users to interact with the objects in the audiovisual scene generated at the user’s end. However, neither of them prescribes how to obtain the objects. Many methods have been proposed for segmentation of video objects. One of the approaches is the “Analysis Model” (AM) of European COST-211 project. It is a modular approach to video object segmentation problem. Although AM performs acceptably in some cases, the results in many other cases are not good enough to be considered as semantic objects. In this thesis, a new tool is integrated and some modules are replaced by improved versions. One of the tools uses a block-based motion estimation technique to analyze the motion content within a scene, computes a motion activity parameter, and skips frames accordingly. Also introduced is a powerful motion estimation method which uses maximum a posteriori probability (MAP) criterion and Gibbs energies to obtain more reliable motion vectors and to calculate temporally unpredictable areas. To handle more complex motion in the scene, the 2-D affine motion model is added to the motion segmentation module, which employs only the translational model. The observed results indicate that the AM performance is improved substantially. The objects in the scene and their boundaries are detected more accurately, compared to the previous results.

Source Title

Publisher

Course

Other identifiers

Book Title

Degree Discipline

Electrical and Electronic Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)

Language

English

Type