Client-specific anomaly detection for face presentation attack detection
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
One-class anomaly detection approaches are particularly appealing for use in face presentation attack detection (PAD), especially in an unseen attack scenario, where the system is exposed to novel types of attacks. This work builds upon an anomaly-based formulation of the problem and analyses the merits of deploying client-specific information for face spoofing detection. We propose training one-class client-specific classifiers (both generative and discriminative) using representations obtained from pre-trained deep Convolutional Neural Networks (CNN). In order to incorporate client-specific information, a distinct threshold is set for each client based on subject-specific score distributions, which is then used for decision making at the test time. Through extensive experiments using different one-class systems, it is shown that the use of client-specific information in a one-class anomaly detection formulation (both in model construction as well as decision boundary selection) improves the performance significantly. We also show that anomaly-based solutions have the capacity to perform as well or better than two-class approaches in the unseen attack scenarios. Moreover, it is shown that CNN features obtained from models trained for face recognition appear to discard discriminative traits for spoofing detection and are less capable for PAD compared to the CNNs trained for a generic object recognition task.