Plasmonics from metal nanoparticles for solar cell applications

buir.advisorGülseren, Oğuz
dc.contributor.authorGünendi, Mehmet Can
dc.date.accessioned2016-01-08T20:02:31Z
dc.date.available2016-01-08T20:02:31Z
dc.date.issued2013
dc.descriptionCataloged from PDF version of article.en_US
dc.descriptionIncludes bibliographical references leaves 47-49.en_US
dc.description.abstractIn today’s economy, need for development in energy is essential. Solar energy is safe, and at the same time is one of the cleanest, cheapest choices of energy alternative to fossil fuels. In this perspective, using the sun light effectively is in fundamental importance. One of the problems, because of the indirect band gap of the material Si, is small energy conversion ratios of various solar cell structures and limited absorption of red light. Because of the material properties, Si cells cannot absorb red light, which contributes great amount of the sun light. One of the recent developed techniques to use red light is using metal nanoparticles (MNP) embedded in a semiconductor medium as sub-wavelength antennas or MNP scatterers, hence increasing the effective path length of light in the cell. Absorption and scattering are mostly in plasmon resonances. Shifting the plasmon resonance peaks is possible by changing various parameters of the system like the size of the MNPs. In this work, Finite-Difference Time-Domain (FDTD) method is used to analyze various systems worked. Mainly the MEEP package, developed at MIT, is used to simulate systems and other codes, related to analytical work, have also used to compare results. The plasmon resonances of various sizes of Ag MNPs embedded in different mediums at different positions are analyzed. Critical parameters like particle size, shape, dielectric medium, film thickness are discussed for improved solar cell applications.en_US
dc.description.provenanceMade available in DSpace on 2016-01-08T20:02:31Z (GMT). No. of bitstreams: 1 0006748.pdf: 5517500 bytes, checksum: 1bd07e105a8ecb46e5e15b8ea816c0ac (MD5)en
dc.description.statementofresponsibilityGünendi, Mehmet Canen_US
dc.format.extentxi, 49 leaves, graphicsen_US
dc.identifier.urihttp://hdl.handle.net/11693/16892
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSolar Cellsen_US
dc.subjectPlasmonicsen_US
dc.subjectmetal nanoparticlesen_US
dc.subjectAg nanoparticlesen_US
dc.subjectFDTDen_US
dc.subjectMEEPen_US
dc.subjectDrudeen_US
dc.subjectLorentzen_US
dc.subject.lccTK2960 .G85 2013en_US
dc.subject.lcshSolar cells.en_US
dc.subject.lcshPlasmons (Physics)en_US
dc.subject.lcshNanoparticles.en_US
dc.subject.lcshMetals.en_US
dc.subject.lcshSurface plasmon resonance.en_US
dc.titlePlasmonics from metal nanoparticles for solar cell applicationsen_US
dc.typeThesisen_US
thesis.degree.disciplinePhysics
thesis.degree.grantorBilkent University
thesis.degree.levelMaster's
thesis.degree.nameMS (Master of Science)

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0006748.pdf
Size:
5.26 MB
Format:
Adobe Portable Document Format