Random walks on symmetric spaces and inequalities for matrix spectra

dc.citation.epage59en_US
dc.citation.issueNumber1-3en_US
dc.citation.spage37en_US
dc.citation.volumeNumber319en_US
dc.contributor.authorKlyachko, A.A.en_US
dc.date.accessioned2016-02-08T10:37:09Z
dc.date.available2016-02-08T10:37:09Z
dc.date.issued2000en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractUsing harmonic analysis on symmetric spaces we reduce the singular spectral problem for products of matrices to the recently solved spectral problem for sums of Hermitian matrices. This proves R.C. Thompson's conjecture [Matrix Spectral Inequalities, Johns Hopkins University Press, Baltimore, MD, 1988]. © 2000 Elsevier Science Inc.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T10:37:09Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2000en
dc.identifier.issn243795
dc.identifier.urihttp://hdl.handle.net/11693/24979
dc.language.isoEnglishen_US
dc.source.titleLinear Algebra and Its Applicationsen_US
dc.subjectEigenvaluesen_US
dc.subjectRandom walksen_US
dc.subjectSingular valuesen_US
dc.subjectSpherical functionsen_US
dc.titleRandom walks on symmetric spaces and inequalities for matrix spectraen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Random walks on symmetric spaces and inequalities for matrix spectra.pdf
Size:
178.74 KB
Format:
Adobe Portable Document Format
Description:
Full printable version