S3-TM: scalable streaming short text matching

Date

2015

Authors

Basık F.
Gedik, B.
Ferhatosmanoğlu, H.
Kalender, M. E.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

The VLDB Journal

Print ISSN

1066-8888

Electronic ISSN

Publisher

Association for Computing Machinery

Volume

24

Issue

6

Pages

849 - 866

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
3
views
14
downloads

Series

Abstract

Micro-blogging services have become major venues for information creation, as well as channels of information dissemination. Accordingly, monitoring them for relevant information is a critical capability. This is typically achieved by registering content-based subscriptions with the micro-blogging service. Such subscriptions are long-running queries that are evaluated against the stream of posts. Given the popularity and scale of micro-blogging services like Twitter and Weibo, building a scalable infrastructure to evaluate these subscriptions is a challenge. To address this challenge, we present the S3-TM system for streaming short text matching. S3-TM is organized as a stream processing application, in the form of a data parallel flow graph designed to be run on a data center environment. It takes advantage of the structure of the publications (posts) and subscriptions to perform the matching in a scalable manner, without broadcasting publications or subscriptions to all of the matcher instances. The basic design of S$$^3$$3-TM uses a scoped multicast for publications and scoped anycast for subscriptions. To further improve throughput, we introduce publication routing algorithms that aim at minimizing the scope of the multicasts. First set of algorithms we develop are based on partitioning the word co-occurrence frequency graph, with the aim of routing posts that include commonly co-occurring words to a small set of matchers. While effective, these algorithms fell short in balancing the load. To address this, we develop the SALB algorithm, which provides better load balance by modeling the load more accurately using the word-to-post bipartite graph. We also develop a subscription placement algorithm, called LASP, to group together similar subscriptions, in order to minimize the subscription matching cost. Furthermore, to achieve good scalability for increasing number of nodes, we introduce techniques to handle workload skew. Finally, we introduce load shedding techniques for handling unexpected load spikes with small impact on the accuracy. Our experimental results show that S3-TM is scalable. Furthermore, the SALB algorithm provides more than 2.5× throughput compared to the baseline multicast and outperforms the graph partitioning-based approaches.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)