Human activity classification with miniature inertial and magnetic sensor signals

dc.citation.epage960en_US
dc.citation.spage956en_US
dc.contributor.authorYüksek, Murat Cihanen_US
dc.contributor.authorBarshan, Billuren_US
dc.coverage.spatialBarcelona, Spainen_US
dc.date.accessioned2016-02-08T12:15:54Z
dc.date.available2016-02-08T12:15:54Z
dc.date.issued2011en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.descriptionDate of Conference: 29 Aug.-2 Sept. 2011en_US
dc.description.abstractThis study provides a comparative performance assessment of various pattern recognition techniques on classifying human activities that are performed while wearing miniature inertial and magnetic sensors. Activities are classified using five sensor units worn on the chest, the arms, and the legs. Each sensor unit comprises a tri-axial accelerometer, a tri-axial gyroscope, and a tri-axial magnetometer. The classification techniques compared in this study are: naïve Bayesian (NB), artificial neural networks (ANN), dissimilaritybased classifier (DBC), various decision-tree algorithms, Gaussian mixture model (GMM), and support vector machines (SVM). The methods that result in the highest correct differentiation rates are found to be GMM (99.1%), ANN (99.0%), and SVM (98.9%). © 2011 EURASIP.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T12:15:54Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2011en
dc.identifier.issn2219-5491
dc.identifier.urihttp://hdl.handle.net/11693/28269
dc.language.isoEnglishen_US
dc.publisherIEEEen_US
dc.source.title19th European Signal Processing Conference, 2011en_US
dc.subjectClassification techniqueen_US
dc.subjectComparative performance assessmenten_US
dc.subjectDecision-tree algorithmen_US
dc.subjectDifferentiation rateen_US
dc.subjectGaussian Mixture Modelen_US
dc.subjectHuman activitiesen_US
dc.subjectPattern recognition techniquesen_US
dc.subjectSensor unitsen_US
dc.subjectTri-axial magnetometeren_US
dc.subjectTriaxial accelerometeren_US
dc.subjectIntelligent agentsen_US
dc.subjectMagnetic sensorsen_US
dc.subjectNeural networksen_US
dc.subjectPattern recognitionen_US
dc.subjectSignal processingen_US
dc.subjectSupport vector machinesen_US
dc.titleHuman activity classification with miniature inertial and magnetic sensor signalsen_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Human activity classification with miniature inertial and magnetic sensor signals.pdf
Size:
567 KB
Format:
Adobe Portable Document Format
Description:
Full printable version