Team-optimal online estimation of dynamic parameters over distributed tree networks

buir.contributor.authorErgen, Tolga
buir.contributor.authorKozat, Süleyman
dc.citation.epage158en_US
dc.citation.spage148en_US
dc.citation.volumeNumber154en_US
dc.contributor.authorKılıç, O. F.en_US
dc.contributor.authorErgen, Tolgaen_US
dc.contributor.authorSayın, M.en_US
dc.contributor.authorKozat, Süleymanen_US
dc.date.accessioned2020-02-06T08:28:32Z
dc.date.available2020-02-06T08:28:32Z
dc.date.issued2019
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.description.abstractWe study online parameter estimation over a distributed network, where the nodes in the network collaboratively estimate a dynamically evolving parameter using noisy observations. The nodes in the network are equipped with processing and communication capabilities and can share their observations or local estimates with their neighbors. The conventional distributed estimation algorithms cannot perform the team-optimal online estimation in the finite horizon global mean-square error sense (MSE). To this end, we present a team-optimal distributed estimation algorithm through the disclosure of local estimates for tracking an underlying dynamic parameter. We first show that the optimal estimation can be achieved through the diffusion of all the time stamped observations for any arbitrary network and prove that the team optimality through disclosure of local estimates is only possible for certain network topologies such as tree networks. We then derive an iterative algorithm to recursively calculate the combination weights of the disclosed information and construct the team-optimal estimate for each time step. Through series of simulations, we demonstrate the superior performance of the proposed algorithm with respect to the state-of-the-art diffusion distributed estimation algorithms regarding the convergence rate and the finite horizon MSE levels. We also show that while conventional distributed estimation schemes cannot track highly dynamic parameters, through optimal weight and estimate construction, the proposed algorithm presents a stable MSE performance.en_US
dc.description.provenanceSubmitted by Onur Emek (onur.emek@bilkent.edu.tr) on 2020-02-06T08:28:32Z No. of bitstreams: 1 Bilkent-research-paper.pdf: 268963 bytes, checksum: ad2e3a30c8172b573b9662390ed2d3cf (MD5)en
dc.description.provenanceMade available in DSpace on 2020-02-06T08:28:32Z (GMT). No. of bitstreams: 1 Bilkent-research-paper.pdf: 268963 bytes, checksum: ad2e3a30c8172b573b9662390ed2d3cf (MD5) Previous issue date: 2018en
dc.embargo.release2021-01-01
dc.identifier.doi10.1016/j.sigpro.2018.08.007en_US
dc.identifier.issn0165-1684
dc.identifier.urihttp://hdl.handle.net/11693/53124
dc.language.isoEnglishen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttps://doi.org/10.1016/j.sigpro.2018.08.007en_US
dc.source.titleSignal Processingen_US
dc.subjectOptimal estimationen_US
dc.subjectDistributed networken_US
dc.subjectTree networksen_US
dc.subjectDynamic parameteren_US
dc.subjectOnline estimationen_US
dc.titleTeam-optimal online estimation of dynamic parameters over distributed tree networksen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Team-optimal_online_estimation_of_dynamic_parameters_over_distributed_tree_networks.pdf
Size:
771.46 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: