Actor prioritized experience replay (abstract reprint)
buir.contributor.author | Mutlu, Furkan | |
buir.contributor.author | Çiçek, Doğan | |
buir.contributor.author | Kozat, Süleyman | |
dc.citation.issueNumber | 20 | |
dc.citation.volumeNumber | 38 | |
dc.contributor.author | Sağlam, Baturay | |
dc.contributor.author | Mutlu, Furkan | |
dc.contributor.author | Çiçek, Doğan | |
dc.contributor.author | Kozat, Süleyman | |
dc.coverage.spatial | Vancouver, Canada | |
dc.date.accessioned | 2025-03-11T07:57:18Z | |
dc.date.available | 2025-03-11T07:57:18Z | |
dc.date.issued | 2024-03-24 | |
dc.department | Department of Electrical and Electronics Engineering | |
dc.description | Conference Name: 38th AAAI Conference on Artificial Intelligence (AAAI) / 36th Conference on Innovative Applications of Artificial Intelligence / 14th Symposium on Educational Advances in Artificial Intelligence Date of Conference: February 20-27, 2024 | |
dc.description.abstract | A widely-studied deep reinforcement learning (RL) technique known as Prioritized Experience Replay (PER) allows agents to learn from transitions sampled with non-uniform probability proportional to their temporal-difference (TD) error. Although it has been shown that PER is one of the most crucial components for the overall performance of deep RL methods in discrete action domains, many empirical studies indicate that it considerably underperforms off-policy actor-critic algorithms. We theoretically show that actor networks cannot be effectively trained with transitions that have large TD errors. As a result, the approximate policy gradient computed under the Q-network diverges from the actual gradient computed under the optimal Q-function. Motivated by this, we introduce a novel experience replay sampling framework for actor-critic methods, which also regards issues with stability and recent findings behind the poor empirical performance of PER. The introduced algorithm suggests a new branch of improvements to PER and schedules effective and efficient training for both actor and critic networks. An extensive set of experiments verifies our theoretical findings, showing that our method outperforms competing approaches and achieves state-of-the-art results over the standard off-policy actor-critic algorithms. | |
dc.identifier.doi | 10.1609/aaai.v38i20.30610 | |
dc.identifier.eissn | 2374-3468 | |
dc.identifier.issn | 2159-5399 | |
dc.identifier.uri | https://hdl.handle.net/11693/117070 | |
dc.language.iso | English | |
dc.publisher | AAAI Press | |
dc.relation.ispartof | Thirty-eighth AAAI conference on artificial intelligence | |
dc.relation.ispartofseries | AAAI Conference on Artificial Intelligence | |
dc.relation.isversionof | https://dx.doi.org/10.1609/aaai.v38i20.30610 | |
dc.rights | CC BY 4.0 DEED (Attribution 4.0 International) | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.source.title | Thirty-eighth AAAI conference on artificial intelligence | |
dc.title | Actor prioritized experience replay (abstract reprint) | |
dc.type | Other |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Actor_prioritized_experience_replay_(abstract_reprint).pdf
- Size:
- 37.85 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 2.1 KB
- Format:
- Item-specific license agreed upon to submission
- Description: