A comprehensive methodology for determining the most informative mammographic features

dc.citation.epage947en_US
dc.citation.issueNumber5en_US
dc.citation.spage941en_US
dc.citation.volumeNumber26en_US
dc.contributor.authorWu, Y.en_US
dc.contributor.authorAlagoz O.en_US
dc.contributor.authorAyvaci, M.U.S.en_US
dc.contributor.authorMunoz Del Rio, A.en_US
dc.contributor.authorVanness, D.J.en_US
dc.contributor.authorWoods, R.en_US
dc.contributor.authorBurnside, E.S.en_US
dc.date.accessioned2016-02-08T09:35:03Z
dc.date.available2016-02-08T09:35:03Z
dc.date.issued2013en_US
dc.departmentDepartment of Industrial Engineeringen_US
dc.description.abstractThis study aims to determine the most informative mammographic features for breast cancer diagnosis using mutual information (MI) analysis. Our Health Insurance Portability and Accountability Act-approved database consists of 44,397 consecutive structured mammography reports for 20,375 patients collected from 2005 to 2008. The reports include demographic risk factors (age, family and personal history of breast cancer, and use of hormone therapy) and mammographic features from the Breast Imaging Reporting and Data System lexicon. We calculated MI using Shannon's entropy measure for each feature with respect to the outcome (benign/malignant using a cancer registry match as reference standard). In order to evaluate the validity of the MI rankings of features, we trained and tested naïve Bayes classifiers on the feature with tenfold cross-validation, and measured the predictive ability using area under the ROC curve (AUC). We used a bootstrapping approach to assess the distributional properties of our estimates, and the DeLong method to compare AUC. Based on MI, we found that mass margins and mass shape were the most informative features for breast cancer diagnosis. Calcification morphology, mass density, and calcification distribution provided predictive information for distinguishing benign and malignant breast findings. Breast composition, associated findings, and special cases provided little information in this task. We also found that the rankings of mammographic features with MI and AUC were generally consistent. MI analysis provides a framework to determine the value of different mammographic features in the pursuit of optimal (i.e., accurate and efficient) breast cancer diagnosis. © 2013 Society for Imaging Informatics in Medicine.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T09:35:03Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2013en
dc.identifier.doi10.1007/s10278-013-9588-5en_US
dc.identifier.issn0897-1889
dc.identifier.urihttp://hdl.handle.net/11693/20778
dc.language.isoEnglishen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10278-013-9588-5en_US
dc.source.titleJournal of Digital Imagingen_US
dc.subjectBI-RADSen_US
dc.subjectBreast canceren_US
dc.subjectDecision supporten_US
dc.subjectInformaticsen_US
dc.subjectMammographyen_US
dc.subjectMutual informationen_US
dc.subjectBI-RADSen_US
dc.subjectBreast Canceren_US
dc.subjectDecision supportsen_US
dc.subjectInformaticsen_US
dc.subjectMutual informationsen_US
dc.subjectBiomineralizationen_US
dc.subjectBoneen_US
dc.subjectDecision support systemsen_US
dc.subjectDiseasesen_US
dc.subjectHealth insuranceen_US
dc.subjectMammographyen_US
dc.subjectMedical imagingen_US
dc.subjectageden_US
dc.subjectarea under the curveen_US
dc.subjectBreast Neoplasmsen_US
dc.subjectcalcinosisen_US
dc.subjectcomputer assisted diagnosisen_US
dc.subjectfactual databaseen_US
dc.subjectfemaleen_US
dc.subjecthospital information systemen_US
dc.subjecthumanen_US
dc.subjectmammographyen_US
dc.subjectmiddle ageden_US
dc.subjectproceduresen_US
dc.subjectradiographyen_US
dc.subjectreceiver operating characteristicen_US
dc.subjectretrospective studyen_US
dc.subjectrisk factoren_US
dc.subjectarticleen_US
dc.subjectbreast tumoren_US
dc.subjectcomputer assisted diagnosisen_US
dc.subjectmammographyen_US
dc.subjectmethodologyen_US
dc.subjectAgeden_US
dc.subjectArea Under Curveen_US
dc.subjectBreast Neoplasmsen_US
dc.subjectCalcinosisen_US
dc.subjectDatabases, Factualen_US
dc.subjectFemaleen_US
dc.subjectHumansen_US
dc.subjectMammographyen_US
dc.subjectMiddle Ageden_US
dc.subjectRadiographic Image Interpretation, Computer-Assisteden_US
dc.subjectRadiology Information Systemsen_US
dc.subjectRetrospective Studiesen_US
dc.subjectRisk Factorsen_US
dc.subjectROC Curveen_US
dc.subjectAgeden_US
dc.subjectArea Under Curveen_US
dc.subjectBreast Neoplasmsen_US
dc.subjectCalcinosisen_US
dc.subjectDatabases, Factualen_US
dc.subjectFemaleen_US
dc.subjectHumansen_US
dc.subjectMammographyen_US
dc.subjectMiddle Ageden_US
dc.subjectRadiographic Image Interpretation, Computer-Assisteden_US
dc.subjectRadiology Information Systemsen_US
dc.subjectRetrospective Studiesen_US
dc.subjectRisk Factorsen_US
dc.subjectROC Curveen_US
dc.titleA comprehensive methodology for determining the most informative mammographic featuresen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A comprehensive methodology for determining the most informative mammographic features.pdf
Size:
230.19 KB
Format:
Adobe Portable Document Format
Description:
Full printable version