Distance between a maximum point and the zero set of an entire function

Date

2006

Editor(s)

Advisor

Kaptanoğlu, Turgay

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
2
views
34
downloads

Series

Abstract

We obtain asymptotical bounds from below for the distance between a maximum modulus point and the zero set of an entire function. Known bounds (Macintyre, 1938) are more precise, but they are valid only for some maximum modulus points. Our bounds are valid for all maximum modulus points and moreover, up to a constant factor, they are unimprovable. We consider entire functions of regular growth and obtain better bounds for these functions. We separately study the functions which have very slow growth. We show that the growth of these functions can not be very regular and obtain precise bounds for their growth irregularity. Our bounds are expressed in terms of some smooth majorants of the growth function. These majorants are defined by using orders, types, (strong) proximate orders of entire functions.

Course

Other identifiers

Book Title

Degree Discipline

Mathematics

Degree Level

Doctoral

Degree Name

Ph.D. (Doctor of Philosophy)

Citation

Published Version (Please cite this version)