Moving object detection using adaptive subband decomposition and fractional lower-order statistics in video sequences
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Citation Stats
Series
Abstract
In this paper, a moving object detection method in video sequences is described. In the first step, the camera motion is eliminated using motion compensation. An adaptive subband decomposition structure is then used to analyze the motion compensated image. In the "low-high" and "high-low" subimages moving objects appear as outliers and they are detected using a statistical detection test based on fractional lower-order statistics. It turns out that the distribution of the subimage pixels is almost Gaussian in general. On the other hand, at the object boundaries the distribution of the pixels in the subimages deviates from Gaussianity due to the existence of outliers. By detecting the regions containing outliers the boundaries of the moving objects are estimated. Simulation examples are presented. © 2002 Elsevier Science B.V. All rights reserved.