Super resolution mri via upscaling diffusion bridges

buir.contributor.authorMirza, Muhammad Usama
buir.contributor.authorArslan, Fuat
buir.contributor.authorÇukur, Tolga
buir.contributor.orcidÇukur, Tolga|0000-0002-2296-851X
dc.contributor.authorMirza, Muhammad Usama
dc.contributor.authorArslan, Fuat
dc.contributor.authorÇukur, Tolga
dc.coverage.spatialMersin, Turkiye
dc.date.accessioned2025-02-22T20:39:27Z
dc.date.available2025-02-22T20:39:27Z
dc.date.issued2024-06-23
dc.departmentDepartment of Electrical and Electronics Engineering
dc.descriptionConference Name: 32nd IEEE Signal processing and communications applications conference (SIU)
dc.descriptionDate of Conference:MAY 15-18, 2024
dc.description.abstractMagnetic Resonance Imaging (MRI) is a powerful medical imaging modality that provides high-resolution anatomical information about tissues. However, the intrinsic trade-off between acquisition time and image quality poses challenges in obtaining high-resolution images within a clinically feasible timeframe. This study introduces a novel approach to acquire high-resolution images in short scan times based on Super-Resolution Diffusion Bridges (SRDB). The proposed method leverages advanced machine learning techniques based on diffusion models to upscale MR images. The While standard diffusion models learn a mapping from Gausssian distributed noise images to target images, SRDB instead learns a mapping from low-resolution MR images to high-resolution images. Unlike the task-independent learning in standard diffusion model, SRDB thus performs task-based learning to improve structural consistency and better preservation of anatomical features. In this way, the trained models help capture fine details that may be missed in standard low-resolution MRI acquisitions.
dc.description.provenanceSubmitted by Aleyna Demirkıran (aleynademirkiran@bilkent.edu.tr) on 2025-02-22T20:39:27Z No. of bitstreams: 1 Super_Resolution_MRI_via_Upscaling_Diffusion_Bridges (1).pdf: 5361138 bytes, checksum: 985bf0018812d4477190e213b96cd151 (MD5)en
dc.description.provenanceMade available in DSpace on 2025-02-22T20:39:27Z (GMT). No. of bitstreams: 1 Super_Resolution_MRI_via_Upscaling_Diffusion_Bridges (1).pdf: 5361138 bytes, checksum: 985bf0018812d4477190e213b96cd151 (MD5) Previous issue date: 2024-06-23en
dc.identifier.doi0.1109/SIU61531.2024.10600909
dc.identifier.eisbn979-8-3503-8896-1
dc.identifier.issn2165-0608
dc.identifier.urihttps://hdl.handle.net/11693/116662
dc.language.isoEnglish
dc.relation.isversionofhttps://dx.doi.org/0.1109/SIU61531.2024.10600909
dc.subjectMRI
dc.subjectUpscaling
dc.subjectDiffusion
dc.subjectResolution
dc.subjectGenerative
dc.titleSuper resolution mri via upscaling diffusion bridges
dc.typeConference Paper

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Super_Resolution_MRI_via_Upscaling_Diffusion_Bridges (1).pdf
Size:
5.11 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: