Approaches for inequity-averse sorting
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
In this paper we consider multi-criteria sorting problems where the decision maker (DM) has equity concerns. In such problems each alternative represents an allocation of an outcome (e.g. income, service level, health outputs) over multiple indistinguishable entities. We propose three sorting algorithms that are different from the ones in the current literature in the sense that they apply to cases where the DM's preference relation satisfies anonymity and convexity properties. The first two algorithms are based on additive utility function assumption and the third one is based on the symmetric Choquet integral concept. We illustrate their use by sorting countries into groups based on their income distributions using real-life data. To the best of our knowledge our work is the first attempt to solve sorting problems in a symmetric setting.