Distributed waveguide design for reducing thermal load in semiconductor high power lasers

Limited Access
This item is unavailable until:
2025-07-01

Date

2025-01

Editor(s)

Advisor

Demir, Abdullah

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
38
views
12
downloads

Series

Abstract

Semiconductor lasers lead laser technology due to their high efficiency, compact size, and cost-effectiveness. Among these, GaAs-based laser diodes (LDs) are the most efficient light sources, but are still constrained by self-heating, which elevates internal temperatures and degrades performance, output power, and de-vice lifetime. Traditionally, increasing the cavity length has mitigated this issue by improving thermal conductivity, facilitated by advances in epitaxial growth, design, and device packaging. However, the cavity lengths of high-power GaAs LDs are now limited to approximately 5 mm, beyond which the output power declines because of intrinsic physical constraints. This work presents a new type of waveguide design, called distributed waveguide (DWG), that overcomes conventional cavity-length limitations. The DWG integrates lasing and secondary sections along the waveguide, which are electrically isolated to control current injection, yet optically connected for efficient beam transport. The laser section is electrically pumped to generate output, while the secondary section operates near-threshold to dissipate heat effectively. Extending the cavity length from 4 to 8 mm, DWG LDs exhibit significantly improved thermal management with favorable device characteristics. Experimental results, corroborated by numerical analysis, demonstrate that DWGs achieve approximately 1.8× lower junction temperature change while delivering high output power. Additionally, the DWG platform and its fabrication process are fully com-patible with standard semiconductor laser manufacturing techniques, ensuring industrial adoption. This work provides clear evidence that innovative waveguide designs can effectively mitigate self-heating, promising enhanced performance, output power, and reliability in semiconductor lasers.

Source Title

Publisher

Course

Other identifiers

Book Title

Degree Discipline

Materials Science and Nanotechnology

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)

Language

English

Type