Fixed zeros of decentralized control systems

dc.citation.epage151en_US
dc.citation.issueNumber1en_US
dc.citation.spage146en_US
dc.citation.volumeNumber45en_US
dc.contributor.authorÜÜnyelioglu, K. A.en_US
dc.contributor.authorÖzgüner, Ü.en_US
dc.contributor.authorÖzgüler, A. B.en_US
dc.date.accessioned2016-02-08T10:39:12Z
dc.date.available2016-02-08T10:39:12Z
dc.date.issued2000en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.description.abstractThis paper considers the notion of decentralized fixed zeros for linear, time-invariant, finite-dimensional systems. For an N-channel plant that is free of unstable decentralized fixed modes, an unstable decentralized fixed zero of Channel i (1 ≤ i ≤ N) is defined as an element of the closed right half-plane, which remains as a blocking zero of that channel under the application of every set of N - 1 controllers around the other channels, which make the resulting single-channel system stabilizable and detectable. This paper gives a complete characterization of unstable decentralized fixed zeros in terms of system-invariant zeros.en_US
dc.identifier.doi10.1109/9.827373en_US
dc.identifier.issn0018-9286
dc.identifier.urihttp://hdl.handle.net/11693/25101
dc.language.isoEnglishen_US
dc.publisherIEEEen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/9.827373en_US
dc.source.titleIEEE Transactions on Automatic Controlen_US
dc.subjectClosed loop control systemsen_US
dc.subjectDecentralized controlen_US
dc.subjectMatrix algebraen_US
dc.subjectOptimal control systemsen_US
dc.subjectPoles and zerosen_US
dc.subjectSystem stabilityen_US
dc.subjectTheorem provingen_US
dc.subjectDecentralized fixed zerosen_US
dc.subjectTransfer matrixen_US
dc.subjectLinear control systemsen_US
dc.titleFixed zeros of decentralized control systemsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Fixed zeros of decentralized control systems.pdf
Size:
199.2 KB
Format:
Adobe Portable Document Format
Description:
Full Printable Version