Accounting for parameter uncertainty in large-scale stochastic simulations with correlated inputs

dc.citation.epage673en_US
dc.citation.issueNumber3en_US
dc.citation.spage661en_US
dc.citation.volumeNumber59en_US
dc.contributor.authorBiller, B.en_US
dc.contributor.authorCorlu, C. G.en_US
dc.date.accessioned2016-02-08T09:53:19Z
dc.date.available2016-02-08T09:53:19Z
dc.date.issued2011en_US
dc.departmentDepartment of Industrial Engineeringen_US
dc.description.abstractThis paper considers large-scale stochastic simulations with correlated inputs having normal-to-anything (NORTA) distributions with arbitrary continuous marginal distributions. Examples of correlated inputs include processing times of workpieces across several workcenters in manufacturing facilities and product demands and exchange rates in global supply chains. Our goal is to obtain mean performance measures and confidence intervals for simulations with such correlated inputs by accounting for the uncertainty around the NORTA distribution parameters estimated from finite historical input data. This type of uncertainty is known as the parameter uncertainty in the discrete-event stochastic simulation literature. We demonstrate how to capture parameter uncertainty with a Bayesian model that uses Sklar's marginal-copula representation and Cooke's copula-vine specification for sampling the parameters of the NORTA distribution. The development of such a Bayesian model well suited for handling many correlated inputs is the primary contribution of this paper. We incorporate the Bayesian model into the simulation replication algorithm for the joint representation of stochastic uncertainty and parameter uncertainty in the mean performance estimate and the confidence interval. We show that our model improves both the consistency of the mean line-item fill-rate estimates and the coverage of the confidence intervals in multiproduct inventory simulations with correlated demands.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T09:53:19Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2011en
dc.identifier.doi10.1287/opre.1110.0915en_US
dc.identifier.eissn1526-5463
dc.identifier.issn0030-364X
dc.identifier.urihttp://hdl.handle.net/11693/21938
dc.language.isoEnglishen_US
dc.publisherInstitute for Operations Research and the Management Sciences (I N F O R M S)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1287/opre.1110.0915en_US
dc.source.titleOperations Researchen_US
dc.subjectBayesianen_US
dc.subjectCorrelationen_US
dc.subjectDesign of experimentsen_US
dc.subjectSamplingen_US
dc.subjectStatistical analysisen_US
dc.subjectParameter uncertaintyen_US
dc.titleAccounting for parameter uncertainty in large-scale stochastic simulations with correlated inputsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Accounting_for_parameter_uncertainty_in_large-scale_stochastic_simulations_with_correlated_inputs.pdf
Size:
237.59 KB
Format:
Adobe Portable Document Format
Description:
View / Download