Pentagonal nanowires: a first-principles study of the atomic and electronic structure
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Citation Stats
Series
Abstract
We performed an extensive first-principles study of nanowires in various pentagonal structures by using pseudopotential plane wave method within the density functional theory. Our results show that nanowires of different types of elements, such as alkali, simple, transition, and noble metals and inert gas atoms, have a stable structure made from staggered pentagons with a linear chain perpendicular to the planes of the pentagons and passing through their centers. This structure exhibits bond angles close to those in the icosahedral structure. However, silicon is found to be energetically more favorable in the eclipsed pentagonal structure. These quasi-one-dimensional pentagonal nanowires have higher cohesive energies than many other one-dimensional structures and hence may be realized experimentally. The effects of magnetic state are examined by spin-polarized calculations. The origin of the stability is discussed by examining optimized structural parameters, charge density and electronic band structure, and by using analysis based on the empirical Lennard-Jones-type interaction. Electronic band structure of pentagonal wires of different elements are discussed and their effects on quantum ballistic conductance are mentioned. It is found that the pentagonal wire of silicon exhibits metallic band structure.