A recursive way for sparse reconstruction of parametric spaces

buir.contributor.authorArıkan, Orhan
buir.contributor.orcidArıkan, Orhan|0000-0002-3698-8888
dc.citation.epage641en_US
dc.citation.spage637en_US
dc.contributor.authorTeke, Oğuzhanen_US
dc.contributor.authorGürbüz, A. C.en_US
dc.contributor.authorArıkan, Orhanen_US
dc.coverage.spatialPacific Grove, CA, USA
dc.date.accessioned2016-02-08T12:21:52Z
dc.date.available2016-02-08T12:21:52Z
dc.date.issued2015-11en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.descriptionDate of Conference: 2-5 Nov. 2014
dc.descriptionConference name: 48th Asilomar Conference on Signals, Systems and Computers, 2014
dc.description.abstractA novel recursive framework for sparse reconstruction of continuous parameter spaces is proposed by adaptive partitioning and discretization of the parameter space together with expectation maximization type iterations. Any sparse solver or reconstruction technique can be used within the proposed recursive framework. Experimental results show that proposed technique improves the parameter estimation performance of classical sparse solvers while achieving Cramér-Rao lower bound on the tested frequency estimation problem. © 2014 IEEE.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T12:21:52Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2015en
dc.identifier.doi10.1109/ACSSC.2014.7094524en_US
dc.identifier.urihttp://hdl.handle.net/11693/28485
dc.language.isoEnglishen_US
dc.publisherIEEEen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ACSSC.2014.7094524en_US
dc.source.titleConference Record - Asilomar Conference on Signals, Systems and Computersen_US
dc.subjectBasis mismatchen_US
dc.subjectCompressive sensingen_US
dc.subjectOff-grid targetsen_US
dc.subjectRecursive solveren_US
dc.subjectParse reconstructionen_US
dc.subjectChannel estimationen_US
dc.subjectCompressed sensingen_US
dc.subjectMaximum principleen_US
dc.subjectSparse reconstructionen_US
dc.subjectFrequency estimationen_US
dc.titleA recursive way for sparse reconstruction of parametric spacesen_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A recursive way for sparse reconstruction of parametric spaces.pdf
Size:
165.47 KB
Format:
Adobe Portable Document Format
Description:
Full Printable Version