High-conducting magnetic nanowires obtained from uniform titanium-covered carbon nanotubes
Date
2004
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Physical Review B - Condensed Matter and Materials Physics
Print ISSN
0163-1829
Electronic ISSN
Publisher
American Physical Society
Volume
69
Issue
12
Pages
121407-1 - 121407-4
Language
English
Type
Journal Title
Journal ISSN
Volume Title
Attention Stats
Usage Stats
1
views
views
12
downloads
downloads
Series
Abstract
We have shown that a semiconducting single-wall carbon nanotube (SWNT) can be covered uniformly by titanium atoms and form a complex but regular atomic structure. The circular cross section changes to a squarelike form, and the system becomes metallic with high state density at the Fermi level and with high quantum ballistic conductance. Metallicity is induced not only by the metal-metal coupling, but also by the band-gap closing of SWNT's at the corners of the square. Even more interesting is that uniform titanium-covered tubes have magnetic ground state with significant net magnetic moment. Our results have been obtained by the first-principles pseudopotential plane-wave calculations within the density-functional theory.