Cascaded cross entropy-based search result diversification

Date
2012
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Bilkent University
Volume
Issue
Pages
Language
English
Type
Thesis
Journal Title
Journal ISSN
Volume Title
Abstract

Search engines are used to find information on the web. Retrieving relevant documents for ambiguous queries based on query-document similarity does not satisfy the users because such queries have more than one different meaning. In this study, a new method, cascaded cross entropy-based search result diversification (CCED), is proposed to list the web pages corresponding to different meanings of the query in higher rank positions. It combines modified reciprocal rank and cross entropy measures to balance the trade-off between query-document relevancy and diversity among the retrieved documents. We use the Latent Dirichlet Allocation (LDA) algorithm to compute query-document relevancy scores. The number of different meanings of an ambiguous query is estimated by complete-link clustering. We construct the first Turkish test collection for result diversification, BILDIV-2012. The performance of CCED is compared with Maximum Marginal Relevance (MMR) and IA-Select algorithms. In this comparison, the Ambient, TREC Diversity Track, and BILDIV-2012 test collections are used. We also compare performance of these algorithms with those of Bing and Google. The results indicate that CCED is the most successful method in terms of satisfying the users interested in different meanings of the query in higher rank positions of the result list.

Course
Other identifiers
Book Title
Keywords
Ambiguous Query, Cross Entropy, IA-Select, Latent Dirichlet Allocation (LDA)
Citation
Published Version (Please cite this version)