Application of the kramers–kronig relations to multi-sine electrochemical impedance measurements
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Citation Stats
Attention Stats
Series
Abstract
Impedance spectra obtained by fast Fourier transformation of the response to a multi-sine potential perturbation are shown to be consistent with the Kramers–Kronig relations, even for systems that are nonlinear and nonstationary. These results, observed for measurements on a Li/SOCl2 battery, were confirmed by numerical simulations. Consistency with the Kramers–Kronig relations was confirmed by use of the measurement model developed by Agrawal et al. and by a linear measurement model approach developed by Boukamp and implemented by Gamry. The present work demonstrates that application of the Kramers–Kronig relations to the results of multi-sine measurements cannot be used to determine whether the experimental system satisfies the conditions of linearity, causality and stability.