Extensions to common laplace and fourier transforms

buir.contributor.authorHaldun M. Özaktaş
dc.citation.epage312en_US
dc.citation.issueNumber11en_US
dc.citation.spage310en_US
dc.citation.volumeNumber4en_US
dc.contributor.authorOnural, L.
dc.contributor.authorErden, M. F.
dc.contributor.authorÖzaktaş, Haldun M.
dc.date.accessioned2015-07-28T11:55:57Z
dc.date.available2015-07-28T11:55:57Z
dc.date.issued1997-11en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.description.abstractThe extended versions of common Laplace and Fourier transforms are given. This is achieved by defining a new function fe(p), p 2 C related to the function to be transformed f(t), t 2 R. Then fe(p) is transformed by an integral whose path is defined on an inclined line on the complex plane. The slope of the path is the parameter of the extended definitions which reduce to common transforms with zero slope. Inverse transforms of the extended versions are also defined. These proposed definitions, when applied to filtering in complex ordered fractional Fourier stages, significantly reduce the required computation.en_US
dc.identifier.doi10.1109/97.641396en_US
dc.identifier.issn1070-9908
dc.identifier.urihttp://hdl.handle.net/11693/10811
dc.language.isoEnglishen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/97.641396en_US
dc.source.titleIEEE Signal Processing Lettersen_US
dc.subjectFilteringen_US
dc.subjectFourier transformen_US
dc.subjectFractional Fourier transformen_US
dc.subjectLaplace transformen_US
dc.titleExtensions to common laplace and fourier transformsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Extensions_to_common_Laplace_and_Fourier_transforms.pdf
Size:
103.83 KB
Format:
Adobe Portable Document Format
Description:
Full Printable Version