Visual analysis of large multi-dield AMR data on GPUs using interactive volume lines
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
To visually compare ensembles of volumes, dynamic volume lines (DVLs) represent each ensemble member as a 1D polyline. To compute these, the volume cells are sorted on a space-filling curve and scaled by the ensemble’s local variation. The resulting 1D plot can augment or serve as an alternative to a 3D volume visualization free of visual clutter and occlusion. Interactively computing DVLs is challenging when the data is large, and the volume grid is not structured/regular, as is often the case with computational fluid dynamics simulations. We extend DVLs to support large-scale, multifield adaptive mesh refinement (AMR) data that can be explored interactively. Our GPU-based system updates the DVL representation whenever the data or the alpha transfer function changes. We demonstrate and evaluate our interactive prototype using large AMR volumes from astrophysics simulations.