Massive random access with trellis-based codes and random signatures

buir.contributor.authorDuman, Tolga M.
buir.contributor.orcidDuman, Tolga M.|0000-0002-5187-8660
dc.citation.epage1499en_US
dc.citation.issueNumber5en_US
dc.citation.spage1496en_US
dc.citation.volumeNumber25en_US
dc.contributor.authorTanc, A. K.
dc.contributor.authorDuman, Tolga M.
dc.date.accessioned2022-01-26T10:32:19Z
dc.date.available2022-01-26T10:32:19Z
dc.date.issued2021-01-05
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.description.abstractWe investigate unsourced and grant-free massive random access in which all the users employ the same codebook, and the basestation is only interested in decoding the distinct messages sent. To resolve the colliding user packets, a novel approach relying on user transmissions with random-like amplitudes selected from a large number of possible signatures is proposed. The scheme is combined with convolutional coding for error correction. The receiver operates by first identifying the signatures used by the transmitting nodes employing a sparsity-based detection algorithm, and then utilizing a trellis-based decoding algorithm. Despite its simplicity, the proposed solution offers excellent performance.en_US
dc.identifier.doi10.1109/LCOMM.2021.3049195en_US
dc.identifier.eissn1558-2558
dc.identifier.issn1089-7798
dc.identifier.urihttp://hdl.handle.net/11693/76794
dc.publisherIEEEen_US
dc.relation.isversionofhttps://doi.org/10.1109/LCOMM.2021.3049195en_US
dc.source.titleIEEE Communications Lettersen_US
dc.subjectConvolutional codesen_US
dc.subjectMachine-type communicationsen_US
dc.subjectMultiple accessen_US
dc.subjectRandom signaturesen_US
dc.titleMassive random access with trellis-based codes and random signaturesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Massive_random_access_with_trellis-based_codes_and_random_signatures.pdf
Size:
434.06 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: