Risk-averse allocation indices for multiarmed bandit problem
buir.contributor.author | Malekipirbazari, Milad | |
buir.contributor.author | Çavuş, Özlem | |
buir.contributor.orcid | Malekipirbazari, Milad|0000-0002-3212-6498 | |
buir.contributor.orcid | Çavuş, Özlem|0000-0002-9901-0836 | |
dc.citation.epage | 5529 | en_US |
dc.citation.issueNumber | 11 | en_US |
dc.citation.spage | 5522 | en_US |
dc.citation.volumeNumber | 66 | en_US |
dc.contributor.author | Malekipirbazari, Milad | |
dc.contributor.author | Çavuş, Özlem | |
dc.date.accessioned | 2022-01-27T10:30:18Z | |
dc.date.available | 2022-01-27T10:30:18Z | |
dc.date.issued | 2021-01-25 | |
dc.department | Department of Industrial Engineering | en_US |
dc.description.abstract | In classical multiarmed bandit problem, the aim is to find a policy maximizing the expected total reward, implicitly assuming that the decision-maker is risk-neutral. On the other hand, the decision-makers are risk-averse in some real-life applications. In this article, we design a new setting based on the concept of dynamic risk measures where the aim is to find a policy with the best risk-adjusted total discounted outcome. We provide a theoretical analysis of multiarmed bandit problem with respect to this novel setting and propose a priority-index heuristic which gives risk-averse allocation indices having a structure similar to Gittins index. Although an optimal policy is shown not always to have index-based form, empirical results express the excellence of this heuristic and show that with risk-averse allocation indices we can achieve optimal or near-optimal interpretable policies. | en_US |
dc.description.provenance | Submitted by Evrim Ergin (eergin@bilkent.edu.tr) on 2022-01-27T10:30:18Z No. of bitstreams: 1 Risk-averse_allocation_indices_for_multiarmed_bandit_problem.pdf: 801124 bytes, checksum: 5d9223286b222e332419e0feed53a727 (MD5) | en |
dc.description.provenance | Made available in DSpace on 2022-01-27T10:30:18Z (GMT). No. of bitstreams: 1 Risk-averse_allocation_indices_for_multiarmed_bandit_problem.pdf: 801124 bytes, checksum: 5d9223286b222e332419e0feed53a727 (MD5) Previous issue date: 2021-01-25 | en |
dc.identifier.doi | 10.1109/TAC.2021.3053539 | en_US |
dc.identifier.eissn | 1558-2523 | |
dc.identifier.issn | 0018-9286 | |
dc.identifier.uri | http://hdl.handle.net/11693/76828 | |
dc.language.iso | English | en_US |
dc.publisher | IEEE | en_US |
dc.relation.isversionof | https://doi.org/10.1109/TAC.2021.3053539 | en_US |
dc.source.title | IEEE Transactions on Automatic Control | en_US |
dc.subject | Coherent risk measures | en_US |
dc.subject | Dynamic allocation index | en_US |
dc.subject | Dynamic risk-aversion | en_US |
dc.subject | Gittins index | en_US |
dc.subject | Multiarmed bandit (MAB) | en_US |
dc.title | Risk-averse allocation indices for multiarmed bandit problem | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Risk-averse_allocation_indices_for_multiarmed_bandit_problem.pdf
- Size:
- 782.35 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.69 KB
- Format:
- Item-specific license agreed upon to submission
- Description: