Topic-Centric Querying of Web Information Resourcest

dc.citation.epage711en_US
dc.citation.spage699en_US
dc.citation.volumeNumber2113en_US
dc.contributor.authorAltıngövde, İsmail Şengören_US
dc.contributor.authorÖzel, Selma A.en_US
dc.contributor.authorUlusoy, Özgüren_US
dc.contributor.authorÖzsoyoğlu G.en_US
dc.contributor.authorÖzsoyoğlu, Z.M.en_US
dc.coverage.spatialMunich, Germanyen_US
dc.date.accessioned2016-02-08T11:58:13Z
dc.date.available2016-02-08T11:58:13Z
dc.date.issued2001en_US
dc.departmentDepartment of Computer Engineeringen_US
dc.descriptionConference name: 12th International Conference, DEXA 2001en_US
dc.descriptionDate of Conference: September 3–5, 2001en_US
dc.description.abstractThis paper deals with the problem of modeling web information resources using expert knowledge and personalized user information, and querying them in terms of topics and topic relationships. We propose a model for web information resources, and a query language SQL-TC (Topic-Centric SQL) to query the model. The model is composed of web-based information resources (XML or HTML documents on the web), expert advice repositories (domain-expert-specified metadata for information resources), and personalized information about users (captured as user profiles, that indicate users’ preferences as to which expert advice they would like to follow, and which to ignore, etc). The query language SQL-TC makes use of the metadata information provided in expert advice repositories and embedded in information resources, and employs user preferences to further refine the query output. Query output objects/tuples are ranked with respect to the (expert-judged and user- preference-revised) importance values of requested topics/metalinks, and the query output is limited by either top n-ranked objects/tuples, or objects/tuples with importance values above a given threshold, or both. © Springer-Verlag Berlin Heidelberg 2001.en_US
dc.identifier.doi10.1007/3-540-44759-8_68en_US
dc.identifier.doi10.1007/3-540-44759-8en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/11693/27625en_US
dc.language.isoEnglishen_US
dc.publisherSpringer, Berlin, Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/3-540-44759-8_68en_US
dc.source.titleDatabase and Expert Systems Applicationsen_US
dc.subjectComputational linguisticsen_US
dc.subjectExpert systemsen_US
dc.subjectInformation scienceen_US
dc.subjectMetadataen_US
dc.subjectQuery languagesen_US
dc.subjectQuery processingen_US
dc.subjectExpert knowledgeen_US
dc.subjectHTML documentsen_US
dc.subjectInformation resourceen_US
dc.subjectMetadata informationen_US
dc.subjectPersonalized informationen_US
dc.subjectUser informationen_US
dc.subjectWeb informationen_US
dc.subjectWeb-based informationen_US
dc.subjectInformation useen_US
dc.titleTopic-Centric Querying of Web Information Resourcesten_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Topic-Centric Querying of Web Information Resourcest.pdf
Size:
131.17 KB
Format:
Adobe Portable Document Format
Description:
Full printable version