Parameter identification for partially observed diffusions
dc.citation.epage | 50 | en_US |
dc.citation.issueNumber | 1 | en_US |
dc.citation.spage | 33 | en_US |
dc.citation.volumeNumber | 75 | en_US |
dc.contributor.author | Dabbous, T.E. | en_US |
dc.contributor.author | Ahmed, N.U. | en_US |
dc.date.accessioned | 2016-02-08T10:55:00Z | |
dc.date.available | 2016-02-08T10:55:00Z | |
dc.date.issued | 1992 | en_US |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.description.abstract | In this paper, we consider the identification problem of drift and dispersion parameters for a class of partially observed systems governed by Ito equations. Using the pathwise description of the Zakai equation, we formulate the original identification problem as a deterministic control problem in which the unnormalized conditional density (solution of the Zakai equation) is treated as the state, the unknown parameters as controls, and the likelihood ratio as the objective functional. The question of existence of elements in the parameter set that maximize the likelihood ratio is discussed. Further, using variational arguments and the Gateaux differentiability of the unnormalized density on the parameter set, we obtain the necessary conditions for optimal identification. © 1992 Plenum Publishing Corporation. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T10:55:00Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 1992 | en |
dc.identifier.doi | 10.1007/BF00939904 | en_US |
dc.identifier.issn | 223239 | |
dc.identifier.uri | http://hdl.handle.net/11693/26100 | |
dc.language.iso | English | en_US |
dc.publisher | Kluwer Academic Publishers-Plenum Publishers | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1007/BF00939904 | en_US |
dc.source.title | Journal of Optimization Theory and Applications | en_US |
dc.subject | distributed-parameter systems | en_US |
dc.subject | likelihood ratio | en_US |
dc.subject | Nonlinear filtering | en_US |
dc.subject | optimal control | en_US |
dc.subject | parameter identification | en_US |
dc.subject | Differentiation (calculus) | en_US |
dc.subject | Diffusion | en_US |
dc.subject | Distributed parameter control systems | en_US |
dc.subject | Mathematical models | en_US |
dc.subject | Optimal control systems | en_US |
dc.subject | Signal filtering and prediction | en_US |
dc.subject | State space methods | en_US |
dc.subject | Variational techniques | en_US |
dc.subject | Deterministic control problem | en_US |
dc.subject | Gateaux differentiability | en_US |
dc.subject | Ito equations | en_US |
dc.subject | Likelihood ratio | en_US |
dc.subject | Nonlinear filtering | en_US |
dc.subject | Optimal control | en_US |
dc.subject | Parameter identification | en_US |
dc.subject | Zakai equation | en_US |
dc.subject | Parameter estimation | en_US |
dc.title | Parameter identification for partially observed diffusions | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Parameter identification for partially observed diffusions.pdf
- Size:
- 914.08 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version