Three-dimensional human texture estimation learning from multi-view images

Date

2023-12

Editor(s)

Advisor

Boral, Ayşegül Dündar

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
72
views
66
downloads

Series

Abstract

In the fields of graphics and vision, accurately estimating 3D human texture from a single image is a critical task. This process involves developing a mapping function that transforms input images of humans in various poses into parametric (UV) space, while also effectively inferring the appearance of unseen parts. To enhance the quality of 3D human texture estimation, our study introduces a framework that utilizes deformable convolution for adaptive input sampling. This convolution is uniquely characterized by offsets learned through a sophisticated deep neural network. Additionally, we introduce an innovative cycle consistency loss, which markedly enhances view generalization. Our framework is further refined by incorporating an uncertainty-based, pixel-level image reconstruction loss, aimed at augmenting color accuracy. Through comprehensive comparisons with leading-edge methods, our approach demonstrates notable qualitative and quantitative advancements in the field.

Course

Other identifiers

Book Title

Degree Discipline

Computer Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)