Subset based error recovery

buir.contributor.authorEkmekcioğlu, Ömer
buir.contributor.authorAkkaya, Deniz
buir.contributor.authorPınar, Mustafa Çelebi
buir.contributor.orcidAkkaya, Deniz|0000-0002-7578-2516
dc.citation.epage108361- 8en_US
dc.citation.spage108361- 1en_US
dc.citation.volumeNumber191en_US
dc.contributor.authorEkmekcioğlu, Ömer
dc.contributor.authorAkkaya, Deniz
dc.contributor.authorPınar, Mustafa Çelebi
dc.date.accessioned2023-02-16T07:34:30Z
dc.date.available2023-02-16T07:34:30Z
dc.date.issued2021-10-12
dc.departmentDepartment of Industrial Engineeringen_US
dc.description.abstractWe propose a data denoising method using Extreme Learning Machine (ELM) structure which allows us to use Johnson-Lindenstrauß Lemma (JL) for preserving Restricted Isometry Property (RIP) in order to give theoretical guarantees for recovery. Furthermore, we show that the method is equivalent to a robust two-layer ELM that implicitly benefits from the proposed denoising algorithm. Current robust ELM methods in the literature involve well-studied L1, L2 regularization techniques as well as the usage of the robust loss functions such as Huber Loss. We extend the recent analysis on the Robust Regression literature to be effectively used in more general, non-linear settings and to be compatible with any ML algorithm such as Neural Networks (NN). These methods are useful under the scenario where the observations suffer from the effect of heavy noise. We extend the usage of ELM as a general data denoising method independent of the ML algorithm. Tests for denoising and regularized ELM methods are conducted on both synthetic and real data. Our method performs better than its competitors for most of the scenarios, and successfully eliminates most of the noise.en_US
dc.description.provenanceSubmitted by Ezgi Uğurlu (ezgi.ugurlu@bilkent.edu.tr) on 2023-02-16T07:34:30Z No. of bitstreams: 1 Subset_based_error_recovery.pdf: 752954 bytes, checksum: 60a5c8ccad9a9251e30d5382547398a2 (MD5)en
dc.description.provenanceMade available in DSpace on 2023-02-16T07:34:30Z (GMT). No. of bitstreams: 1 Subset_based_error_recovery.pdf: 752954 bytes, checksum: 60a5c8ccad9a9251e30d5382547398a2 (MD5) Previous issue date: 2021-10-12en
dc.embargo.release2023-10-12
dc.identifier.doi10.1016/j.sigpro.2021.108361en_US
dc.identifier.eissn1872-7557
dc.identifier.issn0165-1684
dc.identifier.urihttp://hdl.handle.net/11693/111396
dc.language.isoEnglishen_US
dc.publisherElsevier BVen_US
dc.relation.isversionofhttps://doi.org/10.1016/j.sigpro.2021.108361en_US
dc.source.titleSignal Processingen_US
dc.subjectRobust networksen_US
dc.subjectExtreme learning machineen_US
dc.subjectSparse recoveryen_US
dc.subjectRegularizationen_US
dc.subjectHard thresholdingen_US
dc.titleSubset based error recoveryen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Subset_based_error_recovery.pdf
Size:
735.31 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: