Joint partial fourier and compressed sensing reconstruction for accelerated time-of-flight MR angiography
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Citation Stats
Series
Abstract
Time-of-flight (TOF) magnetic resonance (MR) angiography is a popular tool for non-contrast-enhanced angiographic imaging of intracranial vasculature. However, strategies that lead to enhancement of inflow effects come at the expense of prolonged scan times. This study proposes a combination of two dimensional (2D) acceleration in the phase-encode dimensions via compressed sensing (CS) and one dimensional (1D) partial Fourier (PF) data acquisition in the readout dimension to reduce echo time. An improved projections-onto-convex-sets (POCS) reconstruction framework is utilized, which decomposes the problem into 1D PF projections along the readout dimension, and 2D CS projections along the phase-encode dimensions. This framework enables scan-efficient TOF MR angiography imaging to help maintain high vessel-background contrast.