Spoofing attack detection by anomaly detection

buir.contributor.authorArashloo, Shervin Rahimzadeh
dc.citation.epage8468en_US
dc.citation.spage8464en_US
dc.contributor.authorFatemifar, S.en_US
dc.contributor.authorArashloo, Shervin Rahimzadehen_US
dc.contributor.authorAwais, M.en_US
dc.contributor.authorKittler, J.en_US
dc.coverage.spatialBrighton, United Kingdomen_US
dc.date.accessioned2020-01-28T11:07:16Z
dc.date.available2020-01-28T11:07:16Z
dc.date.issued2019
dc.departmentDepartment of Computer Engineeringen_US
dc.descriptionDate of Conference: 12-17 May 2019en_US
dc.descriptionConference Name: 44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019en_US
dc.description.abstractSpoofing attacks on biometric systems can seriously compromise their practical utility. In this paper we focus on face spoofing detection. The majority of papers on spoofing attack detection formulate the problem as a two or multiclass learning task, attempting to separate normal accesses from samples of different types of spoofing attacks. In this paper we adopt the anomaly detection approach proposed in [1], where the detector is trained on genuine accesses only using one-class classifiers and investigate the merit of subject specific solutions. We show experimentally that subject specific models are superior to the commonly used client independent method. We also demonstrate that the proposed approach is more robust than multiclass formulations to unseen attacks.en_US
dc.description.sponsorshipThe Institute of Electrical and Electronics Engineers Signal Processing Societyen_US
dc.identifier.doi10.1109/ICASSP.2019.8682253en_US
dc.identifier.eisbn9781479981311en_US
dc.identifier.eissn2379-190Xen_US
dc.identifier.isbn9781479981328en_US
dc.identifier.issn1520-6149en_US
dc.identifier.urihttp://hdl.handle.net/11693/52873en_US
dc.language.isoEnglishen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.isversionofhttps://dx.doi.org/10.1109/ICASSP.2019.8682253en_US
dc.source.titleProceedings of the 44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019en_US
dc.subjectFace anti-spoofingen_US
dc.subjectAnomaly detectionen_US
dc.subjectClient-specific informationen_US
dc.subjectOne-class classificationen_US
dc.subjectConvolutional neural networksen_US
dc.titleSpoofing attack detection by anomaly detectionen_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Spoofing_attack_detection_by_anomaly_detection.pdf
Size:
193.51 KB
Format:
Adobe Portable Document Format
Description:
View / Download

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: